-->

Soal dan Pembahasan SPLK

Topik Bahasan
Soal 1
Carilah himpunan penyelesaian dari tiap SPLK berikut.

a. $\begin{cases} y & = 6-5x \\ y & = x^2 \end{cases}$
b. $\begin{cases} y & = x+3 \\ y & = x^2-5x+8 \end{cases}$
c. $\begin{cases} y & = 3x-8 \\ y & = x^2-3x \end{cases}$
d. $\begin{cases} y & = x+1 \\ y & = x^2+x \end{cases}$


Pembahasan

Jawaban a)
Diketahui
$$\begin{cases} y & = 6-5x && (\cdots 1) \\ y & = x^2 && (\cdots 2) \end{cases}$$Substitusikan persamaan $(1)$ pada persamaan $(2)$ sehingga diperoleh
$$\begin{aligned} x^2 & = 6-5x \\ x^2+5x-6 & = 0 \\ (x+6)(x-1) & = 0 \\ x = -6~\text{atau}~x & = 1 \end{aligned}$$Dengan demikian, kita akan dapatkan nilai $y$ jika masing-masing nilai $x$ ini disubstitusi pada salah satu persamaan, misalnya $y = x^2$.
$$\begin{aligned} x = -6 & \Rightarrow y = (-6)^2 = 36 \\ x = 1 & \Rightarrow y = (1)^2 = 1 \end{aligned}$$Jadi, HP SPLK tersebut adalah $\boxed{\{(-6, 36), (1, 1)\}}$

Jawaban b)
Diketahui
$$\begin{cases} y & = x+3 && (\cdots 1) \\ y & = x^2-5x+8 && (\cdots 2) \end{cases}$$Substitusikan persamaan $(1)$ pada persamaan $(2)$sehingga diperoleh
$$\begin{aligned} x^2-5x+8 & = x+3 \\ x^2-6x+5 & = 0 \\ (x-5)(x-1) & = 0 \\ x = 5~\text{atau}~x & = 1 \end{aligned}$$Dengan demikian, kita akan dapatkan nilai $y$ jika masing-masing nilai $x$ ini disubstitusi pada salah satu persamaan, misalnya $y = x+3$.
$$\begin{aligned} x = 5 & \Rightarrow y = 5+3 = 8 \\ x = 1 & \Rightarrow y = 1+3 = 4 \end{aligned}$$Jadi, HP SPLK tersebut adalah $\boxed{\{(5, 8), (1, 4)\}}$

Jawaban c)
Diketahui
$$\begin{cases} y & = 3x-8 && (\cdots 1) \\ y & = x^2-3x && (\cdots 2) \end{cases}$$Substitusikan persamaan $(1)$ pada persamaan $(2)$ sehingga diperoleh
$$\begin{aligned} x^2-3x & = 3x-8 \\ x^2-6x+8 & = 0 \\ (x-2)(x-4) & = 0 \\ x = 2~\text{atau}~x & = 4 \end{aligned}$$Dengan demikian, kita akan dapatkan nilai $y$ jika masing-masing nilai $x$ ini disubstitusi pada salah satu persamaan, misalnya $y = 3x-8$.
$$\begin{aligned} x = 2 & \Rightarrow y = 3(2)-8 = -2 \\ x = 4 & \Rightarrow y = 3(4)-8 = 4 \end{aligned}$$Jadi, HP SPLK tersebut adalah $\boxed{\{(2, -2), (4, 4)\}}$

Jawaban d)
Diketahui
$$\begin{cases} y & = x+1 && (\cdots 1) \\ y & = x^2+x && (\cdots 2) \end{cases}$$Substitusikan persamaan $(1)$ pada persamaan $(2)$ sehingga diperoleh
$$\begin{aligned} x^2+x & = x+1 \\ x^2-1 & = 0 \\ (x+1)(x-1) & = 0 \\ x = -1~\text{atau}~x & = 1 \end{aligned}$$Dengan demikian, kita akan dapatkan nilai $y$ jika masing-masing nilai $x$ ini disubstitusi pada salah satu persamaan, misalnya $y = x+1$.
$$\begin{aligned} x = -1 & \Rightarrow y = -1+1 = 0 \\ x = 1 & \Rightarrow y = 1+1 = 2 \end{aligned}$$Jadi, HP SPLK tersebut adalah $\boxed{\{(-1, 0), (1, 2)\}}$

Soal Nomor 2
Diketahui SPLK 2
$$\begin{cases} 2x+y+1 & = 0 \\ y & = x^2-4x \end{cases}$$
Tunjukkan bahwa sistem persamaan linear dan kuadrat itu tepat memiliki satu anggota dalam himpunan penyelesaiannya.
Carilah himpunan penyelesaiannya itu.
Pembahasan
Jawaban a)
Diketahui
$$\begin{cases} 2x+y+1 & = 0 && (\cdots 1) \\ y & = x^2-4x && (\cdots 2) \end{cases}$$Persamaan $(1)$ dapat diubah menjadi $y = -2x-1$.
Substitusikan persamaan ini ke persamaan $(2)$ sehingga diperoleh
$$\begin{aligned} -2x-1 & = x^2-4x \\ 0 & = x^2-2x+1 \end{aligned}$$Sistem tersebut memiliki tepat satu penyelesaian jika persamaan kuadrat di atas memiliki diskriminan yang nilainya $0$.
$$\begin{aligned} D & = b^2-4ac \\ & = (-2)^2-4(1)(1) \\ & = 4-4 = 0 \end{aligned}$$(Terbukti)

Jawaban b)
Sebelumnya, kita peroleh persamaan kuadrat $x^2-2x+1 = 0$, yang dapat difaktorkan menjadi $(x-1)^2 = 0$ sehingga penyelesaiannya adalah $x=1$.
Substitusi $x=1$ pada persamaan linearnya sehingga didapat
$$y = -2\color{red}{x}-1 = -2(1)-1 = -3 $$Jadi, penyelesaian SPLK tersebut adalah $\boxed{\{(1, -3)\}}$

Soal Nomor 3
Carilah nilai $a$ agar tiap SPLK berikut ini tepat mempunyai satu anggota dalam himpunan penyelesaiannya.
a. $\begin{cases} y & = x+a \\ y & = x^2-3x \end{cases}$
b. $\begin{cases} y & = ax+1 \\ y & = \dfrac12x^2+x+1 \end{cases}$
c. $\begin{cases} y & = x+a \\ y & = \dfrac12x^2-2 \end{cases}$
d. $\begin{cases} y & = ax+2 \\ y & = ax^2+x+1 \end{cases}$


Pembahasan

Jawaban a)
Diketahui
$$\begin{cases} y & = x+a && (\cdots 1) \\ y & = x^2-3x && (\cdots 2) \end{cases}$$Substitusikan persamaan $(1)$ pada persamaan $(2)$ sehingga diperoleh
$$\begin{aligned} x^2-3x & = x+a \\ \underbrace{1}_{\color{red}{a}}x^2\underbrace{-4}_{b}x+\underbrace{(-a)}_{c} & = 0 \end{aligned}$$SPLK tersebut akan memiliki tepat satu penyelesaian apabila nilai diskriminan $D$ persamaan kuadrat di atas bernilai $0$.
$$\begin{aligned} D & = 0 \\ b^2-4\color{red}{a}c & = 0 \\ (-4)^2-4(1)(-a) & = 0 \\ 16+4a & = 0 \\ 4a & = -16 \\ a & = -4 \end{aligned}$$Jadi, nilai $a$ yang memenuhi adalah $\boxed{a=-4}$

Jawaban b)
Diketahui
$$\begin{cases} y & = ax+1 && (\cdots 1) \\ y & = \dfrac12x^2+x+1 && (\cdots 2) \end{cases}$$Substitusikan persamaan $(1)$ pada persamaan $(2)$ sehingga diperoleh
$$\begin{aligned} \dfrac12x^2+x+1 & = ax+1 \\ \underbrace{\dfrac12}_{\color{red}{a}}x^2+\underbrace{(1-a)}_{b}x+\underbrace{0}_{c} & = 0 \end{aligned}$$SPLK tersebut akan memiliki tepat satu penyelesaian apabila nilai diskriminan $D$ persamaan kuadrat di atas bernilai $0$.
$$\begin{aligned} D & = 0 \\ b^2-4\color{red}{a}c & = 0 \\ (1-a)^2-4\left(\dfrac12\right)(0) & = 0 \\ (1-a)^2 & = 0 \\ 1-a & = 0 \\ a & = 1 \end{aligned}$$Jadi, nilai $a$ yang memenuhi adalah $\boxed{a=1}$

Jawaban c)
Diketahui
$$\begin{cases} y & = x+a && (\cdots 1) \\ y & = \dfrac12x^2-2 && (\cdots 2) \end{cases}$$Substitusikan persamaan $(1)$ pada persamaan $(2)$ sehingga diperoleh
$$\begin{aligned} \dfrac12x^2-2 & = x+a \\ \underbrace{\dfrac12}_{\color{red}{a}}x^2\underbrace{-1}_{b}x+\underbrace{(-2-a)}_{c} & = 0 \end{aligned}$$SPLK tersebut akan memiliki tepat satu penyelesaian apabila nilai diskriminan $D$ persamaan kuadrat di atas bernilai $0$.
$$\begin{aligned} D & = 0 \\ b^2-4\color{red}{a}c & = 0 \\ (-1)^2-4\left(\dfrac12\right)(-2-a) & = 0 \\ 1+4+2a & = 0 \\ 2a & = -5 \\ a & = -\dfrac52 \end{aligned}$$Jadi, nilai $a$ yang memenuhi adalah $\boxed{a=-\dfrac52}$

Jawaban d)
Diketahui
$$\begin{cases} y & = ax+2 && (\cdots 1) \\ y & = ax^2+x+1 && (\cdots 2) \end{cases}$$Substitusikan persamaan $(1)$ pada persamaan $(2)$ sehingga diperoleh
$$\begin{aligned} ax^2+x+1 & = ax+2 \\ \underbrace{a}_{\color{red}{a}}x^2+\underbrace{(1-a)}_{b}x+\underbrace{(-1)}_{c} & = 0 \end{aligned}$$SPLK tersebut akan memiliki tepat satu penyelesaian apabila nilai diskriminan $D$ persamaan kuadrat di atas bernilai $0$.
$$\begin{aligned} D & = 0 \\ b^2-4\color{red}{a}c & = 0 \\ (1-a)^2-4(a)(-1) & = 0 \\ (1-2a+a^2)+4a & = 0 \\ a^2+2a+1 & = 0 \\ (a+1)^2 & = 0 \\ a & = -1 \end{aligned}$$Jadi, nilai $a$ yang memenuhi adalah $\boxed{a=-1}$

Soal Nomor 4
Carilah batas-batas nilai $a$ agar setiap SPLK berikut ini sekurang-kurangnya memiliki satu anggota himpunan penyelesaian.
a. $\begin{cases} y & = 2x+a \\ y & = x^2-4x+5 \end{cases}$
b. $\begin{cases} 3x+y & = -1 \\ y^2-2ax & = 0 \end{cases}$

Pembahasan
Jawaban a)
Diketahui $$\begin{cases} y & = 2x+a && (\cdots 1) \\ y & = x^2-4x+5 && (\cdots 2) \end{cases}$$Substitusikan persamaan $(1)$ pada persamaan $(2)$ sehingga diperoleh
$$\begin{cases} x^2-4x+5 & = 2x+a \\ \underbrace{1}_{\color{red}{a}}x^2\underbrace{-6}_{b}x+\underbrace{(5-a)}_{c} & = 0 \end{cases}$$SPLK tersebut akan memiliki setidaknya satu penyelesaian jika persamaan kuadrat di atas memiliki nilai diskriminan $D \geq 0$.
Dengan demikian, kita tuliskan
$$\begin{aligned} D & \geq 0 \\ b^2-4\color{red}{a}c & \geq 0 \\ (-6)^2-4(1)(5-a) & \geq 0 \\ 36-20+4a & \geq 0 \\ 16+4a & \geq 0 \\ 4a & \geq -16 \\ a & \geq -4 \end{aligned}$$Jadi, batas nilai $a$ agar SPLK ini memiliki sekurang-kurangnya satu anggota himpunan penyelesaian adalah $\boxed{a \geq -4}$

Jawaban b)
Diketahui $$\begin{cases} 3x+y & = -1 && (\cdots 1) \\ y^2-2ax & = 0 && (\cdots 2) \end{cases}$$Persamaan $(1)$ dapat ditulis menjadi $y = -1-3x$.
Substitusikan persamaan ini pada persamaan $(2)$ sehingga diperoleh
$$\begin{cases} (-1-3x)^2-2ax & = 0 \\ (1+6x+9x^2)-2ax & = 0 \\ \underbrace{9}_{\color{red}{a}}x^2+\underbrace{(6-2a)}_{b}x+\underbrace{1}_{c} & = 0 \end{cases}$$SPLK tersebut akan memiliki setidaknya satu penyelesaian jika persamaan kuadrat di atas memiliki nilai diskriminan $D \geq 0$.
Dengan demikian, kita tuliskan
$$\begin{aligned} D & \geq 0 \\ b^2-4\color{red}{a}c & \geq 0 \\ (6-2a)^2-4(9)(1) & \geq 0 \\ 4(3-a)^2-4(9) & \geq 0 \\ (3-a)^2-9 & \geq 0 && (\text{bagi}~4) \\ (3-a)^2 & \geq 9 \\ 3-a \leq -3~\text{atau}~& 3-a \geq 3 \\ -a \leq -6~\text{atau}~& -a \geq 0 \\ a \geq 6~\text{atau}~& a \leq 0 \end{aligned}$$Jadi, batas nilai $a$ agar SPLK ini memiliki sekurang-kurangnya satu anggota himpunan penyelesaian adalah $\boxed{a \leq 0~\text{atau}~a \geq 6}$

Soal Nomor 5
Carilah nilai $m$ agar tiap SPLK berikut tepat mempunyai satu anggota dalam himpunan penyelesaiannya.
a. $\begin{cases} y = x+m \\ x^2+4y^2-4 = 0 \end{cases}$
b. $\begin{cases} y = mx \\ x^2+y^2-8x-4y+16 = 0 \end{cases}$

Pembahasan
Jawaban a)
Diketahui
$$\begin{cases} y = x+m & (\cdots 1) \\ x^2 + 4y^2-4 = 0 & (\cdots 2) \end{cases}$$Substitusikan persamaan $(1)$ pada persamaan $(2)$ sehingga diperoleh
$$\begin{aligned} x^2+4(x+m)^2-4 & = 0 \\ x^2+4(x^2+2mx+m^2)-4 & = 0 \\ 5x^2+8mx+(4m^2-4) & = 0 \end{aligned}$$SPLK tersebut akan memiliki tepat satu penyelesaian apabila persamaan kuadrat di atas memiliki nilai diskriminan sama dengan $0$. Kita peroleh
$$\begin{aligned} D & = 0 \\ b^2-4ac & = 0 \\ (8m)^2-4(5)(4m^2-4) & = 0 \\ 64m^2-80m^2+80 & = 0 \\ -16m^2 + 80 & = 0 \\ -m^2 + 5 & = 0 && (\text{bagi}~16) \\ m^2 & = 5 \\ m & = \pm \sqrt5 \end{aligned}$$Jadi, nilai $m$ yang memuat SPLK tersebut memiliki tepat satu penyelesaian adalah $m = \sqrt5$ atau $m = -\sqrt5$.

Jawaban b)
Diketahui
$$\begin{cases} y = mx & (\cdots 1) \\ x^2 +y^2-8x-4y+16 = 0 & (\cdots 2) \end{cases}$$Substitusikan persamaan $(1)$ pada persamaan $(2)$ sehingga diperoleh
$$\begin{aligned} x^2+(mx)^2-8x-4(mx)+16 & = 0 \\ (1+m^2)x^2+(-8-4m)x+16 & = 0 \end{aligned}$$SPLK tersebut akan memiliki tepat satu penyelesaian apabila persamaan kuadrat di atas memiliki nilai diskriminan sama dengan $0$. Kita peroleh
$$\begin{aligned} D & = 0 \\ b^2-4ac & = 0 \\ (-8-4m)^2-4(1+m^2)(16) & = 0 \\ 16(2+m)^2-4(1+m^2)(16) & = 0 \\ (2+m)^2-4(1+m^2) & = 0 && (\text{bagi}~16) \\ 4+4m+m^2-4-4m^2 & = 0 \\ -3m^2+4m & = 0 \\ m(-3m + 4) & = 0 \\ m = 0~\text{atau}~m & = \dfrac43 \end{aligned}$$Jadi, nilai $m$ yang memuat SPLK tersebut memiliki tepat satu penyelesaian adalah $m = 0$ atau $m = \dfrac43$.

Soal Nomor 6
Misalkan $p, q$ adalah bilangan real yang bukan nol. Carilah himpunan penyelesaian dari SPLK berikut ini dengan menyatakannya dalam $p$ dan $q$.
a. $\begin{cases} px + qy = 0 \\ p^2x^2 + pqx + q^2y^2 = 0 \end{cases}$
b. $\begin{cases} x+y = p+q \\ x^2+y^2+xy-p^2-q^2-pq = 0 \end{cases}$

Pembahasan
Jawaban a)
Diketahui
$$\begin{cases} px + qy = 0 & (\cdots 1) \\ p^2x^2 + pqx + q^2y^2 = 0 & (\cdots 2) \end{cases}$$Persamaan $(1)$ dapat ditulis kembali menjadi $y = -\dfrac{px}{q}$. Substitusikan pada persamaan $(2)$.
$$\begin{aligned} p^2x^2 + pqx + q^2\color{red}{y}^2 & = 0 \\ p^2x^2 + pqx + q^2\left(-\dfrac{px}{q}\right)^2 & = 0 \\ p^2x^2 + pqx + \cancel{q^2} \cdot \dfrac{p^2x^2}{\cancel{q^2}} & = 0 \\ 2p^2x^2 + pqx & = 0 \\ px(2px + q) & = 0 \end{aligned}$$Persamaan terakhir menunjukkan bahwa kita telah memperoleh
$$\begin{aligned} px = 0 & \Rightarrow x = 0 \\ 2px + q = 0 & \Rightarrow x = -\dfrac{q}{2p} \end{aligned}$$Masing-masing nilai $x$ ini disubstitusi pada persamaan $y = -\dfrac{px}{q}$. Kita akan memperoleh
$$\begin{aligned} x = 0 & \Rightarrow y = -\dfrac{p(0)}{q} = 0 \\ x = -\dfrac{q}{2p} & \Rightarrow y = -\dfrac{p}{q} \cdot \left(-\dfrac{q}{2p}\right) = \dfrac12 \end{aligned}$$Jadi, himpunan penyelesaian SPLK tersebut adalah $$\boxed{\left\{(0, 0), \left(-\dfrac{q}{2p}, \dfrac12\right)\right\}}$$Jawaban b)
Diketahui
$$\begin{cases} x+y = p+q & (\cdots 1) \\ x^2+y^2+xy-p^2-q^2-pq = 0 & (\cdots 2) \end{cases}$$Kedua ruas pada persamaan $(1)$ dikuadratkan, dan kita akan peroleh
$$\begin{aligned} (x+y)^2 & = (p+q)^2 \\ x^2+2xy+y^2 & = p^2+2pq+q^2 \\ x^2+y^2+2xy-p^2-q^2-2pq & = 0 && (\cdots 3) \end{aligned}$$Sekarang, persamaan $(3)$ dikurangi persamaan $(2)$.
$$\begin{aligned} \! \begin{aligned} x^2+y^2+2xy-p^2-q^2-2pq & = 0 \\ x^2+y^2+xy-p^2-q^2-pq & = 0 \end{aligned} \\ \rule{7 cm}{0.6pt} – \\ \! \begin{aligned} xy-pq & = 0 \\ xy & = pq \end{aligned} \end{aligned}$$Dengan demikian, kita dapat tuliskan
$$\begin{cases} x+y & = p+q && (\cdots 1) \\ xy & = pq && (\cdots 2) \end{cases}$$Dengan demikian, didapat dua penyelesaian, yaitu $(x, y) = (p, q)$ atau $(x, y) = (q, p)$.
Jadi, himpunan penyelesaian SPLK tersebut adalah $$\boxed{\{(p, q), (q, p)\}}$$

Soal Nomor 7
Tentukan himpunan penyelesaian SPLK berikut.
a. $\begin{cases} y = x + 1 \\ x^2+y^2-25 = 0 \end{cases}$
b. $\begin{cases} 2x-y-3 = 0 \\ x^2-y^2 = 0 \end{cases}$
c. $\begin{cases} 3x-y-16 = 0 \\ x^2+y^2-6x+4y-12 = 0 \end{cases}$


Pembahasan
Jawaban a)
Diketahui SPLK
$$\begin{cases} y = x + 1 & (\cdots 1) \\ x^2+y^2-25 = 0 & (\cdots 2) \end{cases}$$Persamaan $(1)$ disubstitusikan pada persamaan $(2)$.
$$\begin{aligned} x^2+\color{red}{y}^2-25 & = 0 \\ x^2+(x+1)^2-25 & = 0 \\ x^2+(x^2+2x+1)-25 & = 0 \\ 2x^2 +2x-24 & = 0 \\ x^2+x-12 & = 0 \\ (x+4)(x-3) & = 0 \\ x = -4~\text{atau}~x & = 3 \end{aligned}$$Jika $x = -4$, maka diperoleh $y = -3$.
Jika $x = 3$, maka diperoleh $y = 4$.
Jadi, HP SPLK tersebut adalah $\boxed{\{(-4, -3), (3, 4)\}}$

Jawaban b)
Diketahui SPLK
$$\begin{cases} 2x-y-3 = 0 & (\cdots 1) \\ x^2-y^2 = 0 & (\cdots 2) \end{cases}$$Persamaan $(1)$ dapat ditulis menjadi $y = 2x-3$. Substitusikan pada persamaan $(2)$.
$$\begin{aligned} x^2-\color{red}{y}^2 & = 0 \\ (x+\color{red}{y})(x-\color{red}{y}) & = 0 \\ (x+(2x-3))(x-(2x-3)) & = 0 \\ (3x-3)(-x+3) & = 0 \\ x = 1~\text{atau}~x & = 3 \end{aligned}$$Jika $x = 1$, maka diperoleh $y = -1$.
Jika $x = 3$, maka diperoleh $y = 3$.
Jadi, HP SPLK tersebut adalah $\boxed{\{(1, -1), (3, 3)\}}$

Jawaban c)
Diketahui SPLK
$$\begin{cases} 3x-y-16 = 0 & (\cdots 1) \\ x^2+y^2-6x+4y-12 = 0 & (\cdots 2) \end{cases}$$Persamaan $(1)$ dapat ditulis menjadi $y = 3x-16$. Substitusikan pada persamaan $(2)$.
$$\begin{aligned} x^2+\color{red}{y}^2-6x+4\color{red}{y}-12 & = 0 \\ x^2 + (3x-16)^2-6x + 4(3x-16)-12 & = 0 \\ x^2 + (9x^2-96x+256)-6x + 12x-64-12 & = 0 \\ 10x^2-90x+180 & = 0 \\ x^2-9x+18 & = 0 && (\text{bagi}~10) \\ (x-3)(x-6) & = 0 \end{aligned}$$Jika $x = 3$, maka diperoleh $y = -7$.
Jika $x = 6$, maka diperoleh $y = 2$.
Jadi, HP SPLK tersebut adalah $\boxed{\{3, -7), (6, 2)\}}$
.

Cari Soal dan Pembahasan tentang

Loading...