-->
Topik Bahasan
Himpunan penyelesaian SPLK $$\begin{cases} 2x+3y = 8 \\ 4x^2-12xy+9y^2 = 16 \end{cases}$$adalah $\cdots \cdot$
A. $\left\{(1, 2), \left(3, \dfrac23\right)\right\}$
B. $\left\{(2, 1), \left(3, \dfrac23\right)\right\}$
C. $\left\{(1, 2), \left(\dfrac23, 3\right)\right\}$
D. $\left\{(2, 1), \left(\dfrac23, 3\right)\right\}$
E. $\emptyset$

Pembahasan

Diketahui SPLK
$$\begin{cases} 2x+3y = 8 & (\cdots 1) \\ 4x^2-12xy+9y^2 = 16 & (\cdots 2) \end{cases}$$Persamaan $(2)$ merupakan bagian kuadrat yang dapat difaktorkan sebagai berikut.
$$\begin{aligned} 4x^2-12xy+9y^2 & = 16 \\ (2x-3y)^2 & = 16 \\ (2x-3y)^2-4^2 & = 0 \\ (2x-3y+4)(2x-3y-4) & = 0 \\ 2x-3y+4 = 0~\text{atau}~2x-3y&-4 = 0 \end{aligned}$$Dengan demikian, SPLK tersebut dapat dipecah menjadi dua SPLDV berikut.
SPLDV pertama:
$$\begin{cases} 2x+3y & = 8 \\ 2x-3y + 4 & = 0 \end{cases}$$dengan penyelesaian $(1, 2)$.
SPLDV kedua:
$$\begin{cases} 2x+3y & = 8 \\ 2x-3y-4 & = 0 \end{cases}$$dengan penyelesaian $\left(3, \dfrac23\right)$.
Jadi, himpunan penyelesaian SPLK tersebut adalah $\boxed{\left\{(1, 2), \left(3, \dfrac23\right)\right\}}$
(Jawaban A)
.

Cari Soal dan Pembahasan tentang

Loading...