-->

Pembahasan Soal UM UGM MAT IPA 2019 Kode Soal 624 (Eksponen)

Topik Bahasan ,
Jika $ 4^x+4^{-x}-2^{2-x}+2^{2+x}-7 = 0 $, dengan $ x> 0 $, maka $ 2^x + 2^{-x} = .... $
A). $ \sqrt{2} \, $
B). $ \sqrt{5} \, $
C). $ \sqrt{7} \, $
D). $ \sqrt{10} \, $
E). $ \sqrt{11} $

Catatan
 Sifat-sifat eksponen :
$ a^m.a^n = a^{m+n} $
$ (a^m)^n = a^{m.n} = (a^n)^m $
$ (a+b)^2 = a^2 + b^2 + 2ab $
$ (a-b)^2 = a^2 + b^2 - 2ab $

Jawab Cara I

 Misal : $ 2^x + 2^{-x} = p $

 Menentukan bentuk $ (2^x)^2 + (2^{-x})^2 $ ,kuadratkan :
$\begin{align} (2^x + 2^{-x})^2 & = p^2 \\ (2^x)^2 + (2^{-x})^2 + 2. 2^x . 2^{-x} & = p^2 \\ (2^x)^2 + (2^{-x})^2 + 2. 2^{x + (-x)} & = p^2 \\ (2^x)^2 + (2^{-x})^2 + 2. 2^{0} & = p^2 \\ (2^x)^2 + (2^{-x})^2 + 2. 1 & = p^2 \\ (2^x)^2 + (2^{-x})^2 + 2 & = p^2 \\ (2^x)^2 + (2^{-x})^2 & = p^2 - 2 \end{align} $

Menentukan $ 2^x - 2^{-x} $ :
$\begin{align} (2^x - 2^{-x} ) ^ 2 & = (2^x)^2 + (2^{-x})^2 - 2. 2^x . 2^{-x} \\ (2^x - 2^{-x} ) ^ 2 & = (2^x)^2 + (2^{-x})^2 - 2 \\ (2^x - 2^{-x} ) ^ 2 & = (p^2 - 2) - 2 \\ (2^x - 2^{-x} ) ^ 2 & = p^2 - 4 \\ 2^x - 2^{-x} & = \sqrt{ p^2 - 4 } \end{align} $

Mengubah soalnya ke dalam bentuk $ p $ :
$\begin{align} 4^x+4^{-x}-2^{2-x}+2^{2+x}-7 & = 0 \\ (2^2)^x+ (2^2)^{-x}-2^2. 2^{-x} +2^2. 2^x -7 & = 0 \\ 2^{2x}+ 2^{-2x} -4. 2^{-x} + 4. 2^x -7 & = 0 \\ (2^x)^2 + (2^{-x})^2 + 4( 2^x - 2^{-x} ) -7 & = 0 \\ (p^2 - 2) + 4 \sqrt{ p^2 - 4 } -7 & = 0 \\ 4 \sqrt{ p^2 - 4 } = 9 - & p^2 \end{align} $

Kuadratkan bentuk terakhir di atas :
$\begin{align} (4 \sqrt{ p^2 - 4 })^2 & = (9 - p^2 )^2 \\ 16(p^2 - 4) & = 81 - 18p^2 + p^4 \\ p^4 - 34p^2 + 145 & = 0 \\ (p^2 - 5)(p^2 - 29) & = 0 \\ p^2 = 5 \vee p^2 & = 29 \\ p = \sqrt{5} \vee p & = \sqrt{29} \end{align} $
Yang ada di pilihan adalah $ p = \sqrt{5} $
Jadi, nilai $ 2^x + 2^{-x} = \sqrt{5} . $

Jawab Cara II


Misalkan : $ 2^x = p $. Yang ditanyakan yaitu :
$ 2^x + 2^{-x} = 2^x + \frac{1}{2^x} = p + \frac{1}{p} $
Menentukan bentuk $ p^2 + (\frac{1}{p})^2 $ dengan mengkuadratkan :
$\begin{align} (p - \frac{1}{p})^2 & = p^2 + (\frac{1}{p})^2 - 2. p . \frac{1}{p} \\ (p - \frac{1}{p})^2 & = p^2 + (\frac{1}{p})^2 - 2 \\ p^2 + (\frac{1}{p})^2 & = (p - \frac{1}{p})^2 + 2 \end{align} $
Mengubah soalnya ke dalam bentuk $ p $ :
$\begin{align} 4^x+4^{-x}-2^{2-x}+2^{2+x}-7 & = 0 \\ (2^2)^x+(2^2)^{-x}-2^2.2^{-x}+2^2. 2^x-7 & = 0 \\ (2^x)^2+(2^{-x})^2-4.2^{-x}+4. 2^x-7 & = 0 \\ (2^x)^2+(\frac{1}{2^x})^2-4.\frac{1}{2^x}+4. 2^x-7 & = 0 \\ (p)^2+(\frac{1}{p})^2-4.\frac{1}{p}+4.p-7 & = 0 \\ (p)^2+(\frac{1}{p})^2 + 4( p - \frac{1}{p}) -7 & = 0 \\ (p - \frac{1}{p})^2 + 2 + 4( p - \frac{1}{p}) -7 & = 0 \\ (p - \frac{1}{p})^2 + 4( p - \frac{1}{p}) -5 & = 0 \\ (p - \frac{1}{p} -1 )(p - \frac{1}{p} + 5) & = 0 \\ p - \frac{1}{p} = 1 \vee p - \frac{1}{p} & = - 5 \end{align} $
Kita proses satu per satu sampai ditemukan jawabannya di optionnya.
Bentuk $ p - \frac{1}{p} = 1 $ , kuadratkan :
$\begin{align} p - \frac{1}{p} & = 1 \\ (p - \frac{1}{p})^2 & = 1^2 \\ p^2 + (\frac{1}{p})^2 - 2.p.\frac{1}{p} & = 1 \\ p^2 + (\frac{1}{p})^2 - 2 & = 1 \\ p^2 + (\frac{1}{p})^2 & = 3 \\ (p + \frac{1}{p})^2 & = p^2 + (\frac{1}{p})^2 + 2.p.\frac{1}{p} \\ (p + \frac{1}{p})^2 & = p^2 + (\frac{1}{p})^2 + 2 \\ (p + \frac{1}{p})^2 & = 3 + 2 \\ (p + \frac{1}{p})^2 & = 5 \\ p + \frac{1}{p} & = \sqrt{5} \end{align} $
Karena sudah ada di optionnya, maka bentuk $ p - \frac{1}{p} = -5 $ tidak perlu kita proses lagi.
Jadi, nilai $ 2^x + 2^{-x} = \sqrt{5} $

Catatan : Dari bentuk $ p - \frac{1}{p} = 1 $ , bisa juga dikalikan $ p $ sehingga terbentuk persamaan kuadrat, kemudian tentukan nilai $ p $ nya dengan rumus ABC, setelah itu baru substitusikan ke bentuk $ p + \frac{1}{p} $.

Jawab Cara III

Misalkan : $ 2^x - 2^{-x} = p $
*). Menentukan bentuk $ (2^x)^2 + (2^{-x})^2 $ dengan mengkuadratkan :
$\begin{align} (2^x - 2^{-x})^2 & = p^2 \\ (2^x)^2 + (2^{-x})^2 - 2. 2^x . 2^{-x} & = p^2 \\ (2^x)^2 + (2^{-x})^2 - 2. 2^{x + (-x)} & = p^2 \\ (2^x)^2 + (2^{-x})^2 - 2. 2^{0} & = p^2 \\ (2^x)^2 + (2^{-x})^2 - 2. 1 & = p^2 \\ (2^x)^2 + (2^{-x})^2 - 2 & = p^2 \\ (2^x)^2 + (2^{-x})^2 & = p^2 + 2 \end{align} $
Menentukan $ 2^x + 2^{-x} $ :
$\begin{align} (2^x + 2^{-x} ) ^ 2 & = (2^x)^2 + (2^{-x})^2 + 2. 2^x . 2^{-x} \\ (2^x + 2^{-x} ) ^ 2 & = (2^x)^2 + (2^{-x})^2 + 2 \\ (2^x + 2^{-x} ) ^ 2 & = (p^2 + 2) + 2 \\ (2^x + 2^{-x} ) ^ 2 & = p^2 + 4 \\ 2^x + 2^{-x} & = \sqrt{ p^2 + 4 } \end{align} $
Mengubah soalnya ke dalam bentuk $ p $ :
$\begin{align} 4^x+4^{-x}-2^{2-x}+2^{2+x}-7 & = 0 \\ (2^2)^x+ (2^2)^{-x}-2^2. 2^{-x} +2^2. 2^x -7 & = 0 \\ 2^{2x}+ 2^{-2x} -4. 2^{-x} + 4. 2^x -7 & = 0 \\ (2^x)^2 + (2^{-x})^2 + 4( 2^x - 2^{-x} ) -7 & = 0 \\ (p^2 + 2) + 4 p -7 & = 0 \\ p^2 + 4 p -5 & = 0 \\ (p -1)(p+5) & = 0 \\ p = 1 \vee p & = - 5 \end{align} $
Menentukan nilai $ 2^x + 2^{-x} $ dengan nilai $ p $ :
$\begin{align} p = 1 \rightarrow 2^x + 2^{-x} & = \sqrt{p^2 + 4} \\ & = \sqrt{1^2 + 4} \\ & = \sqrt{5} \\ p = -5 \rightarrow 2^x + 2^{-x} & = \sqrt{p^2 + 4} \\ & = \sqrt{(-5)^2 + 4} \\ & = \sqrt{29} \end{align} $
Yang ada di pilihan jawaban adalah $ p = \sqrt{5} $
Jadi, nilai $ 2^x + 2^{-x} = \sqrt{5} . $ .

Semoga pembahasan soal Pembahasan Soal UM UGM MAT IPA 2019 Kode Soal 624 (Eksponen) ini bermanfaat untuk anda. Jika ada pertanyaan atau soal yang ingin di bahas bisa pilih menu tanya soal. Terima kasih dan sampai jumpa di masalah masalah berikutnya guys.

Cari Soal dan Pembahasan tentang ,

Loading...