-->

Pembahasan Soal UM UGM MAT IPA 2019 Kode Soal 624 (Sistem Persamaan)

Topik Bahasan ,
Jika $ x > 0 $ dan $ y > 0 $ memenuhi sistem persamaan
$ \left\{ \begin{array}{c} 3(x^2-1)-2(y+1)=-1 \\ -2(x-1)+3(y+1)=13 \end{array} \right. $
Nilai $ x^2 + y $ adalah ....
A). $ 20 \, $
B). $ 18 \, $
C). $ 8 \, $
D). $ 6 \, $
E). $ 5 $

Jawab
Diketahui sistem persamaan :
$ \left\{ \begin{array}{c} 3(x^2-1)-2(y+1)=-1 \, \, \, \, \, \text{...(i)} \\ -2(x-1)+3(y+1)=13 \, \, \, \, \, \text{...(ii)} \end{array} \right. $
Pers(i) kali 3 dan pers(ii) kali 2 :
$ \begin{array}{cc} 9(x^2-1)-6(y+1)=-3 & \\ -4(x-1)+6(y+1)=26 & + \\ \hline 9(x^2-1) - 4(x - 1) = 23 & \\ 9x^2 - 4x - 28 = 0 & \\ (x - 2)(9x + 14) = 0 & \\ x = 2 \vee x = - \frac{14}{9} & \end{array} $
Karena $ x > 0 $ , maka $ x = 2 $ yang memenuhi.
Substitusi $ x = 2 $ ke pers(ii) :
$\begin{align} -2(x-1)+3(y+1) & = 13 \\ -2(2-1)+3(y+1) & = 13 \\ -2+3(y+1) & = 13 \\ 3(y+1) & = 15 \\ y + 1 & = 5 \\ y & = 4 \end{align} $
Menentukan nilai $ x^2 + y $ :
$\begin{align} x^2 + y & = 2^2 + 4 \\ & = 4 + 4 = 8 \end{align} $
Jadi, nilai $ x^2 + y = 8 . $ .

Semoga pembahasan soal Pembahasan Soal UM UGM MAT IPA 2019 Kode Soal 624 (Sistem Persamaan) ini bermanfaat untuk anda. Jika ada pertanyaan atau soal yang ingin di bahas bisa pilih menu tanya soal. Terima kasih dan sampai jumpa di masalah masalah berikutnya guys.

Cari Soal dan Pembahasan tentang ,

Loading...