Soal SIMAK UI 2013 Kode 334
Jumlah semua entri pada matriks $X$ dari sistem persamaan berikut adalah...
$3X-2Y=\begin{bmatrix}
3 & -1
\end{bmatrix}$
$2X-5Y=\begin{bmatrix}
1 & 2
\end{bmatrix}$
$\begin{align}
(A)\ & \dfrac{13}{11} \\ (B)\ & \dfrac{9}{11} \\ (C)\ & \dfrac{8}{11} \\ (D)\ & \dfrac{5}{11} \\ (E)\ & \dfrac{4}{11}
\end{align}$
Jawab:
Matriks $X$ dan $Y$ adalah matriks berordo $1 \times 2$ karena hasil pengurangan matriks tersebut adalah sebuah matriks berordo $1 \times 2$. Sehingga dapat kita misalkan $X=\begin{bmatrix}
a & b
\end{bmatrix}$ dan $Y=\begin{bmatrix}
c & d
\end{bmatrix}$
$\begin{align}
3X-2Y &= \begin{bmatrix}
3 & -1
\end{bmatrix} \\ 3\begin{bmatrix}
a & b
\end{bmatrix}-2\begin{bmatrix}
c & d
\end{bmatrix} &= \begin{bmatrix}
3 & -1
\end{bmatrix} \\ \begin{bmatrix}
3a-2c & 3b-2d
\end{bmatrix} &= \begin{bmatrix}
3 & -1
\end{bmatrix} \\ \hline
2X-5Y &= \begin{bmatrix}
1 & 2
\end{bmatrix} \\ 2\begin{bmatrix}
a & b
\end{bmatrix}-5\begin{bmatrix}
c & d
\end{bmatrix} &= \begin{bmatrix}
1 & 2
\end{bmatrix} \\
\begin{bmatrix}
2a-5c & 2b-5d
\end{bmatrix} &= \begin{bmatrix}
1 & 2
\end{bmatrix}
\end{align}$
Dari kesamaan dua matriks di atas kita peroleh:
- $3a-2c=3$ dan $2a-5c=1$
- $3b-2d=-1$ dan $2b-5d=2$
3a-2c=3 & 3b-2d=-1 & \times 5 \\ 2a-5c=1 & 2b-5d=2 & \times 2 \\ \hline
15a-10c=15 & 15b-10d=-5 & \\ 4a-10c=2 & 4b-10d=4 & - \\ \hline
11a =13 & 11b =-9 & \\ a =\dfrac{13}{11} & b =\dfrac{-9}{11}
\end{array} $
Jumlah semua entri pada matriks $X$ adalah $a+b=\dfrac{4}{11}$
$\therefore$ Pilihan yang sesuai adalah $(E)\ \dfrac{4}{11}$
.Semoga pembahasan soal Operasi Hitung dan Kesamaan Matriks ini bermanfaat untuk anda. Jika ada pertanyaan atau soal yang ingin di bahas bisa pilih menu tanya soal. Terima kasih dan sampai jumpa di masalah masalah berikutnya guys.
Cari Soal dan Pembahasan tentang matriks