-->

Diketahui Matriks A berordo 2x2...

Topik Bahasan

Diketahui matriks $A$ berordo $2 \times 2$ dan matriks $B=\begin{pmatrix}
-3 & 5\\ -1 & 2
\end{pmatrix}$ dan $C=\begin{pmatrix}
4 & 5\\ 2 & 3
\end{pmatrix}$. Jika $A$ memenuhi $B \cdot A=C$ maka determinan dari $\left( 2A^{-1} \right)$ adalah...

$\begin{align}
(A)\ & -2 \\ (B)\ & -1 \\ (C)\ & -\dfrac{1}{2} \\ (D)\ & \dfrac{1}{2} \\ (E)\ & 2
\end{align}$


PENYELESAIAN

Berdasarkan informasi pada perkalian matriks soal di atas dan menggunakan sifat determinan matriks yaitu $ \left|A \cdot B \right| = \left|A \right| \cdot \left| B \right|$ dan $ |k \times A_{m\times m}| = k^m \times |A|$, maka berlaku:
$\begin{align}
\left|B \right| &= \begin{vmatrix}
-3 & 5\\ -1 & 2
\end{vmatrix} \\ &= (-3)(2)-(-1)(5)=-1 \\ \left|C \right| &= \begin{vmatrix}
4 & 5\\ 2 & 3
\end{vmatrix} \\ &= (4)(3)-(5)(2)=2 \\ \hline
B \cdot A &=C \\ \left|B \cdot A \right| &= \left| C \right| \\ \left|B \right| \cdot \left| A \right| &= \left| C \right| \\ -1 \cdot \left| A \right| &= 2 \\ \left| A \right| &= -2 \\ \hline
\left| 2 A^{-1} \right| &= 2^{2} \cdot \left| A^{-1} \right| \\ &= 2^{2} \cdot \dfrac{1}{\left | A \right |} \\ &= 4 \cdot \dfrac{1}{-2} \\ &= -2
\end{align} $


$\therefore$ Pilihan yang sesuai adalah $(A)\ -2$

.

Semoga pembahasan soal Diketahui Matriks A berordo 2x2... ini bermanfaat untuk anda. Jika ada pertanyaan atau soal yang ingin di bahas bisa pilih menu tanya soal. Terima kasih dan sampai jumpa di masalah masalah berikutnya guys.

Cari Soal dan Pembahasan tentang

Loading...