-->

Contoh Soal Jumlah Riemann

Topik Bahasan
1). Tentukan jumlah Riemann dari fungsi yang diperlihatkan oleh gambar berikut.
Penyelesaian :
*). Menentukan luas persegi panjang masing-masing :
Persegi panjang 1 : panjang = 0,7 , titik wakil $ x_1 = 0,5 \, $
sehingga lebar $ \, = f(x_1) = f(0,5) = (0,5)^2 - 4 (0,5) + 3 = 1,25 $ .
Luas : $ L_1 = p \times l = 0,7 \times 1,25 = 0,875 $

Persegi panjang 2 : panjang = 1,7 - 0,7 = 1 , titik wakil $ x_2 = 1,5 \, $
sehingga lebar $ \, = f(x_2) = f(1,5) = (1,5)^2 - 4 (1,5) + 3 = -0,75 = 0,75 $ .
Luas : $ L_2 = p \times l = 1 \times 0,75 = 0,75 $

Persegi panjang 3 : panjang = 2,7 - 1,7 = 1 , titik wakil $ x_3 = 2 \, $
sehingga lebar $ \, = f(x_3) = f(2) = (2)^2 - 4 (2) + 3 = -1 = 1 $ .
Luas : $ L_3 = p \times l = 1 \times 1 = 1 $

Persegi panjang 4 : panjang = 4 - 2,7 = 1,3 , titik wakil $ x_4 = 3,5 \, $
sehingga lebar $ \, = f(x_4) = f(3,5) = (3,5)^2 - 4 (3,5) + 3 = 1,25 $ .
Luas : $ L_4 = p \times l = 1,3 \times 1,25 = 1,625 $

*). Menentukan jumlah riemannya :
Jumlah riemann $ \, = L_1 + L_2 + L_3 + L_4 = 0,875 + 0,75 + 1 + 1,625 = 4,25 $
Jadi, jumlah riemann pada gambar adalah 4,25.

2). Misalkan diketahui suatu fungsi $ f(x) = x $ pada interval [0, 3], tentukan jumlah Riemann dengan menggunakan 6 subinterval sama panjang dan titik wakilnya :
a). titik ujung kanan subinterval
b). titik tengah subinterval
c). titik ujung kiri subinterval

Penyelesaian :
a). titik ujung kanan subinterval
*). Menentukan panjang setiap subinterval $(\Delta x_i ) $ :
Pada interval [0,3] dibagi menjadi 6 subinterval sama panjang, sehingga :
$ \Delta x_i = \Delta x = \frac{3-0}{6} = \frac{3}{6} = 0,5 $
Untuk dapat menentukan jumlah Riemann fungsi $ f(x) = x $ dengan 6 subinterval pada selang [0,3], perhatikan grafik fungsi $ f(x) = x $ pada interval [0, 3] dan titik ujung kanan subinterval, berikut:
*). Menentukan titik wakil $(x_i)$ :
Karena yang diminta adalah titik ujung kanan subinterval, maka nilai $ x_i \, $ yang digunakan adalah sebelah kanan setiap subintervalnya.
*). Menentukan lebar (tinggi ) masing-masing subinterval dengan fungsi $ f(x) = x $
Subinterval 1 : 0 - 0,5 dengan $ x_1 = 0,5 \rightarrow f(x_1) = f(0,5) = 0,5 $
Subinterval 2 : 0,5 - 1 dengan $ x_2 = 1 \rightarrow f(x_2) = f(1) = 1 $
Subinterval 3 : 1 - 1,5 dengan $ x_3 = 1,5 \rightarrow f(x_3) = f(1,5) = 1,5 $
Subinterval 4 : 1,5 - 2 dengan $ x_4 = 2 \rightarrow f(x_4) = f(2) = 2 $
Subinterval 5 : 2 - 2,5 dengan $ x_5 = 2,5 \rightarrow f(x_5) = f(2,5) = 2,5 $
Subinterval 6 : 2,5 - 3 dengan $ x_6 = 3 \rightarrow f(x_6) = f(3) = 3 $
*). Menentukan jumlah Riemann :
$ \begin{align} \text{Jumlah Riemann } & = \displaystyle \sum_{i=1}^6 f(x_i) \Delta x_i \\ & = \displaystyle \sum_{i=1}^6 f(x_i) \Delta x \\ & = f(x_1) \Delta x + f(x_2) \Delta x + f(x_3) \Delta x + f(x_4) \Delta x + f(x_5) \Delta x + f(x_6) \Delta x \\ & = [ 0,5 + 1 + 1,5 + 2 + 2,5 + 3 ] \times 0,5 \\ & = [ 10,5 ] \times 0,5 \\ & = 5,25 \end{align} $
Jadi, jumlah riemann dengan titik ujung kanan subintervalnya adalah 5,25.

b). titik tengah subinterval
Untuk dapat menentukan jumlah Riemann fungsi $ f(x) = x $ dengan 6 subinterval pada selang [0,3], perhatikan grafik fungsi $ f(x) = x $ pada interval [0, 3] dan titik tengah subinterval, berikut:
*). Menentukan titik wakil $(x_i)$ :
Karena yang diminta adalah titik tengah subinterval, maka nilai $ x_i \, $ yang digunakan adalah nilai tengah setiap subintervalnya.
*). Menentukan lebar (tinggi ) masing-masing subinterval dengan fungsi $ f(x) = x $
Subinterval 1 : 0 - 0,5 dengan $ x_1 = 0,25 \rightarrow f(x_1) = f(0,25) = 0,25 $
Subinterval 2 : 0,5 - 1 dengan $ x_2 = 0,75 \rightarrow f(x_2) = f(0,75) = 0,75 $
Subinterval 3 : 1 - 1,5 dengan $ x_3 = 1,25 \rightarrow f(x_3) = f(1,25) = 1,25 $
Subinterval 4 : 1,5 - 2 dengan $ x_4 = 1,75 \rightarrow f(x_4) = f(1,75) = 1,75 $
Subinterval 5 : 2 - 2,5 dengan $ x_5 = 2,25 \rightarrow f(x_5) = f(2,25) = 2,25 $
Subinterval 6 : 2,5 - 3 dengan $ x_6 = 2,75 \rightarrow f(x_6) = f(2,75) = 2,75 $
*). Menentukan jumlah Riemann :
$ \begin{align} \text{Jumlah Riemann } & = \displaystyle \sum_{i=1}^6 f(x_i) \Delta x_i \\ & = \displaystyle \sum_{i=1}^6 f(x_i) \Delta x \\ & = f(x_1) \Delta x + f(x_2) \Delta x + f(x_3) \Delta x + f(x_4) \Delta x + f(x_5) \Delta x + f(x_6) \Delta x \\ & = [ 0,25 + 0,75 + 1,25 + 1,75 + 2,25 + 2,75 ] \times 0,5 \\ & = [ 9 ] \times 0,5 \\ & = 4,5 \end{align} $
Jadi, jumlah riemann dengan titik ujung kanan subintervalnya adalah 4,5.

c). titik ujung kiri subinterval
Untuk dapat menentukan jumlah Riemann fungsi $ f(x) = x $ dengan 6 subinterval pada selang [0,3], perhatikan grafik fungsi $ f(x) = x $ pada interval [0, 3] dan titik ujung kiri subinterval, berikut:
*). Menentukan titik wakil $(x_i)$ :
Karena yang diminta adalah titik ujung kanan subinterval, maka nilai $ x_i \, $ yang digunakan adalah sebelah kiri setiap subintervalnya.
*). Menentukan lebar (tinggi ) masing-masing subinterval dengan fungsi $ f(x) = x $
Subinterval 1 : 0 - 0,5 dengan $ x_1 = 0 \rightarrow f(x_1) = f(0) = 0 $
Subinterval 2 : 0,5 - 1 dengan $ x_2 = 0,5 \rightarrow f(x_2) = f(0,5) = 0,5 $
Subinterval 3 : 1 - 1,5 dengan $ x_3 = 1 \rightarrow f(x_3) = f(1) = 1 $
Subinterval 4 : 1,5 - 2 dengan $ x_4 = 1,5 \rightarrow f(x_4) = f(1,5) = 1,5 $
Subinterval 5 : 2 - 2,5 dengan $ x_5 = 2 \rightarrow f(x_5) = f(2) = 2 $
Subinterval 6 : 2,5 - 3 dengan $ x_6 = 2,5 \rightarrow f(x_6) = f(2,5) = 2,5 $
*). Menentukan jumlah Riemann :
$ \begin{align} \text{Jumlah Riemann } & = \displaystyle \sum_{i=1}^6 f(x_i) \Delta x_i \\ & = \displaystyle \sum_{i=1}^6 f(x_i) \Delta x \\ & = f(x_1) \Delta x + f(x_2) \Delta x + f(x_3) \Delta x + f(x_4) \Delta x + f(x_5) \Delta x + f(x_6) \Delta x \\ & = [ 0 + 0,5 + 1 + 1,5 + 2 + 2,5 ] \times 0,5 \\ & = [ 7,5 ] \times 0,5 \\ & = 3,75 \end{align} $
Jadi, jumlah riemann dengan titik ujung kanan subintervalnya adalah 3,75.

Catatan :
Sebenarnya untuk menentukan jumlah Riemann, tanpa gambarpun tidak apa-apa.

3). Misalkan diketahui suatu fungsi $ f(x) = x^2 $ pada interval [0, 3], tentukan jumlah Riemann dengan menggunakan 6 subinterval sama panjang dan titik ujung kanan subinterval sebagai titik wakil tiap-tiap subinterval.

Penyelesaian :
*). Menentukan panjang setiap subinterval $(\Delta x_i ) $ :
Pada interval [0,3] dibagi menjadi 6 subinterval sama panjang, sehingga :
$ \Delta x_i = \Delta x = \frac{3-0}{6} = \frac{3}{6} = 0,5 $
*). Menentukan titik wakil $(x_i) $ dengan membagi menjadi 6 subinterval :
Karena yang diminta adalah titik ujung kanan subinterval, maka nilai $ x_i \, $ yang digunakan adalah sebelah kanan setiap subintervalnya.
*). Menentukan lebar (tinggi ) masing-masing subinterval dengan fungsi $ f(x) = x^2 $
Subinterval 1 : 0 - 0,5 dengan $ x_1 = 0,5 \rightarrow f(x_1) = f(0,5) = 0,5^2 = 0,25 $
Subinterval 2 : 0,5 - 1 dengan $ x_2 = 1 \rightarrow f(x_2) = f(1) = 1^2 = 1 $
Subinterval 3 : 1 - 1,5 dengan $ x_3 = 1,5 \rightarrow f(x_3) = f(1,5) = 1,5^2 = 2,25 $
Subinterval 4 : 1,5 - 2 dengan $ x_4 = 2 \rightarrow f(x_4) = f(2) = 2^2 = 4 $
Subinterval 5 : 2 - 2,5 dengan $ x_5 = 2,5 \rightarrow f(x_5) = f(2,5) = 2,5^2 = 6,25 $
Subinterval 6 : 2,5 - 3 dengan $ x_6 = 3 \rightarrow f(x_6) = f(3) = 3^2 = 9 $
*). Menentukan jumlah Riemann :
$ \begin{align} \text{Jumlah Riemann } & = \displaystyle \sum_{i=1}^6 f(x_i) \Delta x_i \\ & = \displaystyle \sum_{i=1}^6 f(x_i) \Delta x \\ & = f(x_1) \Delta x + f(x_2) \Delta x + f(x_3) \Delta x + f(x_4) \Delta x + f(x_5) \Delta x + f(x_6) \Delta x \\ & = [ 0,25 + 1 + 2,25 + 4 + 6,25 + 9 ] \times 0,5 \\ & = [ 22,75 ] \times 0,5 \\ & = 11,375 \end{align} $
Jadi, jumlah riemann dengan titik ujung kanan subintervalnya adalah 11,375.

         Perhatikan ketiga gambar luasan berikut ini.
Misalkan kita diminta untuk menghitung luas sebenarnya suatu daerah seperti gambar (c) di atas, maka kita bisa menggunakan jumlah riemann dengan membentuk $ n \, $ subinterval dengan $ n \, $ mendekati tak hingga. Dari gambar (a), nampak masih ada beberapa daerah yang belum terkover oleh  persegi panjang yang dibuat, daerah pada gambar (b) juga demikian belum tercover semuanya. Tapi jika nilai $ \Delta x \, $ nya semakin kecil (atau banyak subintervalnya sampai tak hingga), maka akan terbentuk daerah seperti gambar (c) yang artinya luas sebenarnya sudah bisa kita hitung.

Luas Suatu Daerah dengan Jumlah Riemann
       Misalkan kita akan menghitung luas suatu daerah yang dibatasi oleh kurva $ y = f(x) \, $ pada selang interval [a,b] dengan membagi menjadi $ n \, $ subinterval ($n \, $ menuju tak hingga), maka akan kita peroleh luas sebenarnya dengan perhitungan :
              Luas $ \, = \displaystyle \lim_{n \to \infty} \sum_{i=1}^n f(x_i) \Delta x_i \, $
dengan $ \Delta x_i = \Delta x = \frac{b-a}{n} $ .
penulisan lainnya : $ \displaystyle \lim_{n \to \infty} \sum_{i=1}^n f(x_i) \Delta x_i = \int \limits_a^b f(x) dx \, $

Catatan :
Bentuk $ \int \limits_a^b f(x) dx \, $ inilah yang disebut sebagai integral Tentu fungsi $ f(x) \, $ pada interval [a,b] .

Untuk memudahkan dalam pengerjaan jumlah riemann, sebaiknya kita pelajari rumus umum notasi sigma berikut ini :
i). $ \displaystyle \sum_{k=1}^{n} \, k = 1 + 2 + 3 + ... + n = \frac{1}{2}n(n+1) $
ii). $ \displaystyle \sum_{k=1}^{n} \, k^2 = 1^2 + 2^2 + 3^2 + ... + n^2 = \frac{1}{6}n(n+1)(2n+1) $
iii). $ \displaystyle \sum_{k=1}^{n} \, k^3 = 1^3 + 2^3 + 3^3 + ... + n^3 = \left( \frac{1}{2}n(n+1) \right)^2 $


Contoh Soal :
4). Misalkan diberikan suatu fungsi $ f(x) = x $, tentukan integral tentu dari $ f(x) = x $ pada interval [0, 3] atau $ \int \limits_0^3 x dx $

Penyelesaian :
*). Interval yang diminta [a,b]=[0,3]
*). Menentukan nilai $ \Delta x_i = \Delta x = \frac{b-a}{n} = \frac{3-0}{n} = \frac{3}{n} $
*). Menentukan bentuk umum dari $ f(x_i) $
$ x_1 = 0 + \Delta x = 0 + \frac{3}{n} = \frac{1 \times 3}{n} $
$ x_2 = 0 + 2\Delta x = 0 + \frac{2 \times 3}{n} = \frac{2 \times 3}{n} $
$ x_3 = 0 + 3\Delta x = 0 + \frac{3 \times 3}{n} = \frac{3 \times 3}{n} $
dan seterusnya ........
$ x_i = 0 + i \Delta x = 0 + \frac{i \times 3}{n} = \frac{i \times 3}{n} $
Untuk bentuk $ f(x) = x \, $ , maka $ f(x_i) = \frac{i \times 3}{n} $
*). Menentukan jumlah riemannya :
$ \begin{align} \displaystyle \lim_{n \to \infty} \sum_{i=1}^n f(x_i) \Delta x_i & = \displaystyle \lim_{n \to \infty} \sum_{i=1}^n \frac{i \times 3}{n} \frac{3}{n} \\ & = \displaystyle \lim_{n \to \infty} \sum_{i=1}^n i \times \frac{9}{n^2} \\ & = \displaystyle \lim_{n \to \infty} \frac{9}{n^2} \sum_{i=1}^n i \, \, \, \, \, \, \text{(gunakan rumus notasi sigma)} \\ & = \displaystyle \lim_{n \to \infty} \frac{9}{n^2} [\frac{1}{2}n(n+1)] \\ & = \displaystyle \lim_{n \to \infty} \frac{\frac{9}{2}n(n+1)}{n^2} \\ & = \displaystyle \lim_{n \to \infty} \frac{\frac{9}{2}n^2 + \frac{9}{2}n }{n^2} \\ & = \frac{9}{2} \end{align} $
Sehingga nilai dari $ \displaystyle \lim_{n \to \infty} \sum_{i=1}^n f(x_i) \Delta x_i = \int \limits_0^3 x dx = \frac{9}{2} $

5). Misalkan diberikan suatu fungsi $ f(x) = x^2 $, tentukan integral tentu dari $ f(x) = x^2 $ pada interval [0, 2] atau $ \int \limits_0^2 x^2 dx $

Penyelesaian :
*). Interval yang diminta [a,b]=[0,2]
*). Menentukan nilai $ \Delta x_i = \Delta x = \frac{b-a}{n} = \frac{2-0}{n} = \frac{2}{n} $
*). Menentukan bentuk umum dari $ f(x_i) $
$ x_1 = 0 + \Delta x = 0 + \frac{2}{n} = \frac{1 \times 2}{n} $
$ x_2 = 0 + 2\Delta x = 0 + \frac{2 \times 2}{n} = \frac{2 \times 2}{n} $
$ x_3 = 0 + 3\Delta x = 0 + \frac{3 \times 2}{n} = \frac{3 \times 2}{n} $
dan seterusnya ........
$ x_i = 0 + i \Delta x = 0 + \frac{i \times 2}{n} = \frac{i \times 2}{n} $
Untuk bentuk $ f(x) = x^2 \, $ , maka $ f(x_i) = \left( \frac{i \times 2}{n} \right)^2 = \frac{4}{n^2} \times i^2 $
*). Menentukan jumlah riemannya :
$ \begin{align} \displaystyle \lim_{n \to \infty} \sum_{i=1}^n f(x_i) \Delta x_i & = \displaystyle \lim_{n \to \infty} \sum_{i=1}^n \frac{4}{n^2} \times i^2 \frac{2}{n} \\ & = \displaystyle \lim_{n \to \infty} \sum_{i=1}^n i^2 \times \frac{8}{n^3} \\ & = \displaystyle \lim_{n \to \infty} \frac{8}{n^3} \sum_{i=1}^n i^2 \, \, \, \, \, \, \text{(gunakan rumus notasi sigma)} \\ & = \displaystyle \lim_{n \to \infty} \frac{8}{n^3} \frac{1}{6}n(n+1)(2n+1) \\ & = \displaystyle \lim_{n \to \infty} \frac{8}{n^3} \frac{1}{6}(2n^3 + 3n^2 + n) \\ & = \displaystyle \lim_{n \to \infty} \frac{4}{n^3} \frac{1}{3}(2n^3 + 3n^2 + n) \\ & = \displaystyle \lim_{n \to \infty} \frac{8n^3 + 12n^2 + 4n}{3n^3} \\ & = \frac{8 }{3 } \end{align} $
Sehingga nilai dari $ \displaystyle \lim_{n \to \infty} \sum_{i=1}^n f(x_i) \Delta x_i = \int \limits_0^2 x^2 dx = \frac{8}{3} $

6). Nyatakan limit berikut sebagai suatu integal tentu :
a). $ \displaystyle \lim_{n \to \infty} \sum_{i=1}^n \sqrt{\frac{4i}{n}} \frac{4}{n} $
b). $ \displaystyle \lim_{n \to \infty} \sum_{i=1}^n \left( 1 + \frac{2i}{n} \right) \frac{2}{n} $
c). $ \displaystyle \lim_{n \to \infty} \frac{1}{n} \left( \cos (\frac{\pi}{n}) + \cos (\frac{2\pi}{n}) + \cos (\frac{3\pi}{n}) + ... + \cos (\frac{n\pi}{n}) \right) $

Penyelesaian :
a). $ \displaystyle \lim_{n \to \infty} \sum_{i=1}^n \sqrt{\frac{4i}{n}} \frac{4}{n} $
*). Berdasarkan rumus : $ \displaystyle \lim_{n \to \infty} \sum_{i=1}^n f(x_i) \Delta x_i \, $ maka :
*). $ \Delta x_i = \frac{b-a}{n} = \frac{4}{n} \rightarrow b - a = 4 $
dengan $ a = 0 \, $ maka $ b - a = 4 \rightarrow b - 0 = 4 \rightarrow b = 4 $.
*). Bentuk $ x_i = i \Delta x_i = i \frac{4}{n} = \frac{4i}{n} $
$ f(x_i) = \sqrt{\frac{4i}{n}} = \sqrt{x_i} \, $ artinya $ f(x) = \sqrt{x} $.
*). Bentuk integral tentunya :
$ \displaystyle \lim_{n \to \infty} \sum_{i=1}^n \sqrt{\frac{4i}{n}} \frac{4}{n} = \int \limits_a^b f(x) dx = \int \limits_0^4 \sqrt{x} dx $
Jadi, bentuk integral tentunya adalah $ \int \limits_0^4 \sqrt{x} dx $ .

b). $ \displaystyle \lim_{n \to \infty} \sum_{i=1}^n \left( 1 + \frac{2i}{n} \right) \frac{2}{n} $
Dari soal ini, bentuk $ 1 + \frac{2i}{n} \, $ , artinya $ x_i = a + i \Delta x_i \, $ , sehingga $ a = 1 $
*). Berdasarkan rumus : $ \displaystyle \lim_{n \to \infty} \sum_{i=1}^n f(x_i) \Delta x_i \, $ maka :
*). $ \Delta x_i = \frac{b-a}{n} = \frac{2}{n} \rightarrow b - a = 2 $
dengan $ a = 1 \, $ maka $ b - a = 2 \rightarrow b - 1 = 2 \rightarrow b = 3 $.
*). Bentuk $ x_i = a + i \Delta x_i = 1 + i \frac{2}{n} = 1 + \frac{2i}{n} $
$ f(x_i) = \left( 1 + \frac{2i}{n} \right) = (x_i) \, $ artinya $ f(x) = x $.
*). Bentuk integral tentunya :
$ \displaystyle \lim_{n \to \infty} \sum_{i=1}^n \left( 1 + \frac{2i}{n} \right) \frac{2}{n} = \int \limits_a^b f(x) dx = \int \limits_1^3 x dx $
Jadi, bentuk integral tentunya adalah $ \int \limits_1^3 x dx $ .

c). $ \displaystyle \lim_{n \to \infty} \frac{1}{n} \left( \cos (\frac{\pi}{n}) + \cos (\frac{2\pi}{n}) + \cos (\frac{3\pi}{n}) + ... + \cos (\frac{n\pi}{n}) \right) $

*). Kita jadikan bentuk notasi sigma :
$ \displaystyle \frac{1}{n} \left( \cos (\frac{\pi}{n}) + \cos (\frac{2\pi}{n}) + \cos (\frac{3\pi}{n}) + ... + \cos (\frac{n\pi}{n}) \right) = \displaystyle \sum_{i=1}^n \frac{1}{n} \cos \pi (\frac{i}{n}) $
*). Sehingga soal yang akan kita ubah adalah $ \displaystyle \lim_{n \to \infty} \sum_{i=1}^n \frac{1}{n} \cos \pi (\frac{i}{n}) $
*). Berdasarkan rumus : $ \displaystyle \lim_{n \to \infty} \sum_{i=1}^n f(x_i) \Delta x_i \, $ maka :
*). $ \Delta x_i = \frac{b-a}{n} = \frac{1}{n} \rightarrow b - a = 1 $
dengan $ a = 0 \, $ maka $ b - a = 1 \rightarrow b - 0 = 1 \rightarrow b = 1 $.
*). Bentuk $ x_i = i \Delta x_i = i \frac{1}{n} = \frac{i}{n} $
$ f(x_i) = \cos \pi (\frac{i}{n}) = \cos \pi (x_i) \, $ artinya $ f(x) = \cos \pi x $.
*). Bentuk integral tentunya :
$ \displaystyle \lim_{n \to \infty} \sum_{i=1}^n \frac{1}{n} \cos \pi (\frac{i}{n}) = \int \limits_a^b f(x) dx = \int \limits_0^1 \cos \pi x dx $
Jadi, bentuk integral tentunya adalah $ \int \limits_0^1 \, \cos \pi x \, dx $ .

Soal dan Pembahasan Ini dikutip dari freemathlearn.tk.

Cari Soal dan Pembahasan tentang

Loading...