-->

Contoh Soal dan Jawaban Peluruhan (Aplikasi Fungsi Eksponen)

Topik Bahasan
Dalam ilmu biologi ada yang namanya pertumbuhan jenis amoeba tertentu. Misalkan pertumbuhannya mengikuti fungsi eksponensial $ A_t = A_0 \times (2)^t \, $ dengan $ A_0 \, $ adalah banyaknya amoeba pada awal pengamatan dan $ t \, $ adalah waktu pada pengamatan terjadi (satuannya menit). Jika diketahui pada awal pengamatan pukul 09.00 ada 100 amoeba , tentukan banyak amoeba setelah dilakukan pengamatan lagi pada pukul 09.10?

Penyelesaian :
bentuk fungsi eksponen atau fungsi eksponensial untuk pertumbuhan dan peluruhan adalah
$ \begin{align} A_t = A_0 \times (r)^t \end{align} $.
Keterangan :
$ A_t = \, $ besarnya pertumbuhan atau peluruhan pada waktu ke-$t$
$ A_0 = \, $ besarnya pertumbuhan atau peluruhan pada awal periode
$ r = \, $ rasio (tingkat perubahan) .


1). Diketahui : $ A_0 = 100 \, $ amoeba.
selang pukul 09.00 ke pukul 09.10, nilai $ t = 10 \, $ menit.
2). Menghitung Amuba dalam selang waktu $ t = 10 $
$ \begin{align} A_t & = A_0 \times (2)^t \\ A_{10} & = 100 \times (2)^{10} \\ & = 100 \times 1024 \\ & = 102.400 \end{align} $
Jadi,  terdapat 102.400 amoeba yang diamati pukul 09:10 $.   $..

Semoga pembahasan soal Contoh Soal dan Jawaban Peluruhan (Aplikasi Fungsi Eksponen) ini bermanfaat untuk anda. Jika ada pertanyaan atau soal yang ingin di bahas bisa pilih menu tanya soal. Terima kasih dan sampai jumpa di masalah masalah berikutnya guys.

Cari Soal dan Pembahasan tentang

Loading...