-->

Menentukan Sinus dan Cosinus 33 dan 66 derajat Tanpa Kalkulator

Topik Bahasan

Rumus Dasar Trigonometri

$\spadesuit \, $ Sudut komplemen :
$ \sin A = \cos (90^\circ - A) \, $ atau $ \cos A = \sin (90^\circ - A) $
$\spadesuit \, $ Rumus Sudut Ganda
$ \sin A = \sqrt{ \frac{1-\cos 2A}{2}} \, \, $ dan $ \cos A = \sqrt{ \frac{1+\cos 2A}{2}} $
*). Nilai sin dan cos sudut 36 derajat
$ \cos 24^\circ = \frac{1}{4}\sqrt{ 9 + \sqrt{30 + 6\sqrt{5} } - \sqrt{5} } $
$ \sin 24^\circ = \frac{1}{4}\sqrt{ 7 - \sqrt{30 + 6\sqrt{5} } + \sqrt{5} } $
Nilai sin 33 derajat dan sin 66 derajat
$ \sin 33^\circ = \frac{1}{4} \sqrt{ ( 8 - 2\sqrt{ 7 - \sqrt{30 + 6\sqrt{5} } + \sqrt{5} } ) } $
$ \sin 66^\circ = \frac{1}{4}\sqrt{ 9 + \sqrt{30 + 6\sqrt{5} } - \sqrt{5} } $

Cara mengerjakan sin dan cos 66 derajat

*). Nilai sin 66 derajat menggunakan sudut komplemen :
$\begin{align} \sin A & = \cos (90^\circ - A) \\ \sin 66^\circ & = \cos (90^\circ - 66^\circ ) \\ & = \cos 24^\circ \\ & = \frac{1}{4}\sqrt{ 9 + \sqrt{30 + 6\sqrt{5} } - \sqrt{5} } \end{align} $
Jadi, nilai $ \sin 66^\circ = \frac{1}{4}\sqrt{ 9 + \sqrt{30 + 6\sqrt{5} } - \sqrt{5} } $

*). Nilai cos 66 derajat menggunakan sudut komplemen :
$\begin{align} \cos A & = \sin (90^\circ - A) \\ \cos 66^\circ & = \sin (90^\circ - 66^\circ ) \\ & = \sin 24^\circ \\ & = \frac{1}{4}\sqrt{ 9 + \sqrt{30 + 6\sqrt{5} } - \sqrt{5} } \end{align} $
Jadi, nilai $ \cos 66^\circ = \frac{1}{4}\sqrt{ 7 - \sqrt{30 + 6\sqrt{5} } + \sqrt{5} } $

Cara mengerjakan sin dan cos 33 derajat

*). Nilai sin 33 derajat menggunakan sudut ganda:
$\begin{align} \sin A & = \sqrt{ \frac{1-\cos 2A}{2}} \\ \sin 33^\circ & = \sqrt{ \frac{1-\cos 2 \times 33^\circ}{2}} \\ & = \sqrt{ \frac{1-\cos 66^\circ}{2}} \\ & = \sqrt{ \frac{1- \frac{1}{4}\sqrt{ 7 - \sqrt{30 + 6\sqrt{5} } + \sqrt{5} } }{2}} \\ & = \sqrt{ \frac{ \frac{4}{4} - \frac{1}{4}\sqrt{ 7 - \sqrt{30 + 6\sqrt{5} } + \sqrt{5} } }{2}} \\ & = \sqrt{ \frac{ \frac{1}{4} ( 4 - \sqrt{ 7 - \sqrt{30 + 6\sqrt{5} } + \sqrt{5} } ) }{2}} \\ & = \sqrt{ \frac{1}{8} ( 4 - \sqrt{ 7 - \sqrt{30 + 6\sqrt{5} } + \sqrt{5} } ) } \\ & = \sqrt{ \frac{2}{16} ( 4 - \sqrt{ 7 - \sqrt{30 + 6\sqrt{5} } + \sqrt{5} } ) } \\ & = \sqrt{ \frac{1}{16} ( 8 - 2\sqrt{ 7 - \sqrt{30 + 6\sqrt{5} } + \sqrt{5} } ) } \\ & = \frac{1}{4} \sqrt{ ( 8 - 2\sqrt{ 7 - \sqrt{30 + 6\sqrt{5} } + \sqrt{5} } ) } \end{align} $
Jadi, nilai $ \sin 33^\circ = \frac{1}{4} \sqrt{ ( 8 - 2\sqrt{ 7 - \sqrt{30 + 6\sqrt{5} } + \sqrt{5} } ) } $

*). Nilai cos 33 derajat menggunakan sudut ganda:
$\begin{align} \cos A & = \sqrt{ \frac{1 + \cos 2A}{2}} \\ \cos 33^\circ & = \sqrt{ \frac{1 + \cos 2 \times 33^\circ}{2}} \\ & = \sqrt{ \frac{1 + \cos 66^\circ}{2}} \\ & = \sqrt{ \frac{1 + \frac{1}{4}\sqrt{ 7 - \sqrt{30 + 6\sqrt{5} } + \sqrt{5} } }{2}} \\ & = \sqrt{ \frac{ \frac{4}{4} + \frac{1}{4}\sqrt{ 7 - \sqrt{30 + 6\sqrt{5} } + \sqrt{5} } }{2}} \\ & = \sqrt{ \frac{ \frac{1}{4} ( 4 + \sqrt{ 7 - \sqrt{30 + 6\sqrt{5} } + \sqrt{5} } ) }{2}} \\ & = \sqrt{ \frac{1}{8} ( 4 + \sqrt{ 7 - \sqrt{30 + 6\sqrt{5} } + \sqrt{5} } ) } \\ & = \sqrt{ \frac{2}{16} ( 4 + \sqrt{ 7 - \sqrt{30 + 6\sqrt{5} } + \sqrt{5}    } ) } \\ & = \sqrt{ \frac{1}{16} ( 8 + 2\sqrt{ 7 - \sqrt{30 + 6\sqrt{5} } + \sqrt{5} } ) } \\ & = \frac{1}{4} \sqrt{ ( 8 + 2\sqrt{ 7 - \sqrt{30 + 6\sqrt{5} } + \sqrt{5} } ) } \end{align} $
Jadi, nilai $ \cos 33^\circ = \frac{1}{4} \sqrt{ ( 8 + 2\sqrt{ 7 - \sqrt{30 + 6\sqrt{5} } + \sqrt{5} } ) } $

.

Cari Soal dan Pembahasan tentang

Loading...