-->

Soal Aplikasi Matriks dan persamaan Garis

Topik Bahasan

 Soal SIMAK UI 2009 Kode 931

Diketahui $l$ adalah garis yang dinyatakan oleh $det(A)=0$ dimana $A=\begin{pmatrix}
1 & 1 & 2\\ x & y & 1\\ 2 & 1 & 3
\end{pmatrix}$, persamaan garis yang sejajar $l$ dan melalui titik $(3,4)$ adalah...
$\begin{align}
(A)\ & x+y-7=0 \\ (B)\ & x-y+7=0 \\ (C)\ & x-y+1=0 \\ (D)\ & x+y-1=0 \\ (E)\ & x+y+1=0
\end{align}$

Jawab:

Untuk mendapatkan persamaan garis $l$ kita mulai dengan menentukan determinan matrisk ordo $3 \times 3$ yang nilainya adalah nol.
$0=\begin{vmatrix}
1 & 1 & 2\\ x & y & 1\\ 2 & 1 & 3
\end{vmatrix}\left.\begin{matrix}
1 & 1\\ x & y\\ 2 & 1
\end{matrix}\right|$
Persamaan garis $l$ adalah
$(1 \cdot y \cdot 3+1 \cdot 1 \cdot 2+2 \cdot x \cdot 1)-(2 \cdot y \cdot 2+1 \cdot 1 \cdot 1+1 \cdot x \cdot 3)=0$
$(3y+2+2x)-(4y+1+3x)=0$
$ 3y+2+2x-4y-1-3x=0$
$ 1-y-x=0$
$ 1-x=y$

Persamaan garis yang sejajar ($m_{1}=m_{2}$) dengan garis $l$ melalui $(3,4)$ adalah:
$\begin{align}
m & = -1 \\ y-y_{1} & = m(x-x_{1}) \\ y-4 & = -1(x-3) \\ y-4 & = -x+3 \\ y & = -x+7 \\ \end{align}$

$ \therefore $ Pilihan yang sesuai adalah $(A)\ x+y-7=0$

.

Semoga pembahasan soal Soal Aplikasi Matriks dan persamaan Garis ini bermanfaat untuk anda. Jika ada pertanyaan atau soal yang ingin di bahas bisa pilih menu tanya soal. Terima kasih dan sampai jumpa di masalah masalah berikutnya guys.

Cari Soal dan Pembahasan tentang

Loading...