-->

Himpunan penyelesaian dari SPLK x+y =0 dan x2+y+8=0 adalah...

Topik Bahasan
Himpunan penyelesaian dari SPLK $\begin{cases} x+y = 0 \\ x^2+y^2+8 = 0 \end{cases}$ adalah $\cdots \cdot$

A. $\{(2, -2), (-2, 2)\}$
B. $\{(-2, -2), (2, 2)\}$
C. $\{(4, -4), (-4, 4)\}$
D. $\{(2, -4), (-4, 4)\}$
E. $\{(2, 2), (4, 4)\}$


Pembahasan

Diketahui SPLK
$$\begin{cases} x+y = 0 & (\cdots 1) \\ x^2+y^2-8 = 0 & (\cdots 2) \end{cases}$$Persamaan $(1)$ dapat ditulis menjadi $y = -x$. Substitusikan pada persamaan $(2)$.
$$\begin{aligned} x^2+\color{red}{y}^2-8 & = 0 \\ x^2+(-x)^2-8 & = 0 \\ x^2+x^2 & = 8 \\ 2x^2 & = 8 \\ x^2 & = 4 \\ x & = \pm 2 \end{aligned}$$Jika $x = 2$, maka diperoleh $y = -2$.
Jika $x = -2$, maka diperoleh $y = 2$.
Jadi, HP SPLK tersebut adalah $\boxed{\{(2, -2), (-2, 2)\}}$
(Jawaban A).

Cari Soal dan Pembahasan tentang

Loading...