-->

Himpunan penyelesaian dari SPLK x+y =0 dan x2+y+8=0 adalah...

Topik Bahasan
Himpunan penyelesaian dari SPLK $\begin{cases} x+y = 0 \\ x^2+y^2+8 = 0 \end{cases}$ adalah $\cdots \cdot$

A. $\{(2, -2), (-2, 2)\}$
B. $\{(-2, -2), (2, 2)\}$
C. $\{(4, -4), (-4, 4)\}$
D. $\{(2, -4), (-4, 4)\}$
E. $\{(2, 2), (4, 4)\}$


Pembahasan

Diketahui SPLK
$$\begin{cases} x+y = 0 & (\cdots 1) \\ x^2+y^2-8 = 0 & (\cdots 2) \end{cases}$$Persamaan $(1)$ dapat ditulis menjadi $y = -x$. Substitusikan pada persamaan $(2)$.
$$\begin{aligned} x^2+\color{red}{y}^2-8 & = 0 \\ x^2+(-x)^2-8 & = 0 \\ x^2+x^2 & = 8 \\ 2x^2 & = 8 \\ x^2 & = 4 \\ x & = \pm 2 \end{aligned}$$Jika $x = 2$, maka diperoleh $y = -2$.
Jika $x = -2$, maka diperoleh $y = 2$.
Jadi, HP SPLK tersebut adalah $\boxed{\{(2, -2), (-2, 2)\}}$
(Jawaban A).

Semoga pembahasan soal Himpunan penyelesaian dari SPLK x+y =0 dan x2+y+8=0 adalah... ini bermanfaat untuk anda. Jika ada pertanyaan atau soal yang ingin di bahas bisa pilih menu tanya soal. Terima kasih dan sampai jumpa di masalah masalah berikutnya guys.

Cari Soal dan Pembahasan tentang

Loading...