-->

Invers Matriks Soal SBMPTN 2014 Kode 631

Topik Bahasan

 Soal SBMPTN 2014 Kode 631 

Jika $A=\begin{pmatrix}
2 & 3 \\ -1 & 1
\end{pmatrix}$, $B$ memiliki invers, dan $ \left( AB^{-1} \right)^{-1}= \begin{pmatrix}
1 & -1 \\ 3 & 0
\end{pmatrix}$ maka matriks $B=\cdots$
$\begin{align}
(A)\ & \begin{pmatrix}
4 & -1 \\ 6 & 1
\end{pmatrix} \\ (B)\ & \begin{pmatrix}
3 & 2 \\ 6 & 9
\end{pmatrix} \\ (C)\ & \begin{pmatrix}
2 & 0 \\ 0 & 1
\end{pmatrix} \\ (D)\ & \begin{pmatrix}
1 & 6 \\ 4 & 3
\end{pmatrix} \\ (E)\ & \begin{pmatrix}
4 & 5 \\ 6 & -5
\end{pmatrix}
\end{align}$

Jawab:

Sifat perkalian invers pada matriks berlaku $(AB)^{-1}=B^{-1} \cdot A^{-1}$.
$\begin{align}
\left( AB^{-1} \right)^{-1} & = \begin{pmatrix}
1 & -1 \\ 3 & 0
\end{pmatrix} \\ B \cdot A^{-1} & = \begin{pmatrix}
1 & -1 \\ 3 & 0
\end{pmatrix} \\ B \cdot A^{-1} \cdot A & = \begin{pmatrix}
1 & -1 \\ 3 & 0
\end{pmatrix} \cdot A \\ B & = \begin{pmatrix}
1 & -1 \\ 3 & 0
\end{pmatrix} \cdot \begin{pmatrix}
2 & 3 \\ -1 & 1
\end{pmatrix} \\ & = \begin{pmatrix}
2+1 & 3-1 \\ 6+0 & 9+0
\end{pmatrix} \\ & = \begin{pmatrix}
3 & 2 \\ 6 & 9
\end{pmatrix}
\end{align}$

$\therefore$ Pilihan yang sesuai adalah $(B)\ \begin{pmatrix}
3 & 2 \\ 6 & 9 \end{pmatrix}$ .

Cari Soal dan Pembahasan tentang

Loading...