-->

Soal UM STIS 2011 - Invers Matriks

Topik Bahasan

 Matriks $B$ adalah invers matriks $A$, matriks $D$ adalah invers matriks $C$ dan $A \cdot B \cdot C=D$, maka yang merupakan matriks identitas $(I)$ adalah...

$\begin{align}
(A)\ & A^{2} \\ (B)\ & B^{2} \\ (C)\ & C^{2} \\ (D)\ & A \cdot D^{2} \\ (E)\ & A \cdot C^{2}
\end{align}$

Jawaban

Catatan tentang invers matriks dapat membantu;

  • $ (A^{-1})^{-1} = A $
  • $ A^{-1} . A = A.A^{-1} = I $
  • $ AB = I \, $ artinya A dan B saling invers yaitu $ A^{-1} = B \, $ dan $ B^{-1} = A $
  • $ (AB)^{-1} = B^{-1} . A^{-1} $
Dari apa yang disampaikan pada soal, dapat kita simpulkan bahwa:
  • $ B= A^{-1}$ maka $ B^{-1}=A$
  • $ D= C^{-1}$ maka $ D^{-1}=C$
$\begin{align}
A \cdot B \cdot C & =D \\ A \cdot A^{-1} \cdot C & = C^{-1} \\ I \cdot C & = C^{-1} \\ C & = C^{-1} \\ C \cdot C & = C^{-1} \cdot C\\ C^{2} &= I
\end{align}$

$\begin{align}
A \cdot B \cdot C & =D \\ B^{-1} \cdot B \cdot C & = D \\ I \cdot D^{-1} & = D \\ D^{-1} & = D \\ D^{-1} \cdot D & = D \cdot D\\ I & = D^{2} \\ \end{align}$

$\therefore$ Pilihan yang sesuai adalah $(C)\ C^{2}$

.

Semoga pembahasan soal Soal UM STIS 2011 - Invers Matriks ini bermanfaat untuk anda. Jika ada pertanyaan atau soal yang ingin di bahas bisa pilih menu tanya soal. Terima kasih dan sampai jumpa di masalah masalah berikutnya guys.

Cari Soal dan Pembahasan tentang

Loading...