Diberikan kubus $ABCD.EFGH$ dan $P$ adalah titik tengah $BC$. Perbandingan luas segitiga $APG$ dan luas segitiga $DPG$ adalah...
$\begin{align} (A)\ & 1 : 1 \\ (B)\ & \sqrt{3} : \sqrt{2} \\ (C)\ & \sqrt{2} : 1 \\ (D)\ & 3 : 2 \\ (E)\ & \sqrt{3} : 1 \end{align}$
Alternatif Pembahasan:
Jika kita gambarkan kubus $ABCD.EFGH$ yang kita misalkan panjang rusuknya $12$, serta $\bigtriangleup DPG$ seperti berikut ini:
Dari gambar di atas kita peroleh $\bigtriangleup DPG$ merupakan segitiga sama kaki $DP=GP$ dan $DG=12\sqrt{2}$ (diagonal sisi).
$\begin{align}
GP^{2}\ &= CP^{2}+CG^{2} \\
&= 6^{2}+ 12^{2} \\
GP &= \sqrt{36+144}=\sqrt{180}=6\sqrt{5} \\
\hline
t^{2}\ &= GP^{2} - \left(6\sqrt{2} \right)^{2} \\
&= 180 - 72 \\
t &= \sqrt{108}=6 \sqrt{3} \\
\hline
\left[ DPG \right]\ &= \dfrac{1}{2} \cdot DG \cdot t \\
&= \dfrac{1}{2} \cdot 12 \sqrt{2} \cdot 6\sqrt{3} \\
&= 36 \sqrt{6}
\end{align}$
Jika kita gambarkan kubus $ABCD.EFGH$ yang kita misalkan panjang rusuknya $12$, serta $\bigtriangleup APG$ seperti berikut ini:
Dari gambar di atas kita peroleh $\bigtriangleup APG$ merupakan segitiga sama kaki $AP=PG$ dan $AG=12\sqrt{3}$ (diagonal ruang).
$\begin{align}
AP^{2}\ &= AB^{2}+BP^{2} \\
&= 6^{2}+ 12^{2} \\
GP &= \sqrt{36+144}=\sqrt{180}=6\sqrt{5} \\
\hline
t^{2}\ &= GP^{2}- \left(6\sqrt{3} \right)^{2} \\
&= 180 - 108 \\
t &= \sqrt{72}=6 \sqrt{2} \\
\hline
\left[ DPG \right]\ &= \dfrac{1}{2} \cdot DG \cdot t \\
&= \dfrac{1}{2} \cdot 12\sqrt{3} \cdot 6\sqrt{2} \\
&= 36 \sqrt{6}
\end{align}$
Perbandingan luas $\bigtriangleup DPG$ dan $\bigtriangleup APG$ adalah $36 \sqrt{6} : 36 \sqrt{6} = 1 : 1$.
$\therefore$ Pilihan yang sesuai adalah $(A)\ 1 : 1$
.Semoga pembahasan soal Diberikan kubus ABCD.EFGH dan P adalah titik tengah BC... ini bermanfaat untuk anda. Jika ada pertanyaan atau soal yang ingin di bahas bisa pilih menu tanya soal. Terima kasih dan sampai jumpa di masalah masalah berikutnya guys.
Cari Soal dan Pembahasan tentang geometri ruang