Topik Bahasan
integral
$ |x-1| = (x-1) \, $ untuk batas $ x \geq 1 , \, $ atau
$ |x-1| = -(x-1) \, $ untuk batas $ x < 1 , \, $
Hasil Integral
$ \begin{align} \int \limits_{-1}^3 | x - 1| dx & = \int \limits_{-1}^3 | x - 1| dx + \int \limits_{-1}^3 | x - 1| dx \\ & = \int \limits_{-1}^1 | x - 1| dx + \int \limits_{1}^3 | x - 1| dx \\ & = \int \limits_{-1}^1 -(x-1) dx + \int \limits_{1}^3 (x-1) dx \\ & = \int \limits_{-1}^1 (1-x) dx + \int \limits_{1}^3 (x-1) dx \\ & = [x - \frac{1}{2}x^2 ]_{-1}^1 + [\frac{1}{2}x^2 - x]_{1}^3 \\ & = [(1 - \frac{1}{2}.1^2) - ((-1) - \frac{1}{2}(-1)^2 ) ] + [( \frac{1}{2}.3^2 - 3) - ( \frac{1}{2}.1^2 - 1) ] \\ & = [(1 - \frac{1}{2} ) - (-1 - \frac{1}{2} ) ] + [( \frac{9}{2} - 3 ) - ( \frac{1}{2} - 1) ] \\ & = [(\frac{1}{2} ) - (-\frac{3}{2}) ] + [( \frac{3}{2} ) - ( - \frac{1}{2} ) ] \\ & = [ \frac{4}{2} ] + [ \frac{4}{2} ] \\ & = [ 2 ] + [ 2 ] \\ & = 4 \end{align} $
Jadi, hasil dari $ \int \limits_{-1}^3 | x - 1| dx = 4 $.
Soal 2. $ \int \limits_0^5 \sqrt{x^2 - 4x + 4} dx $
$ \sqrt{x^2 - 4x + 4} = (x-2) \, $ untuk batas $ x \geq 2 , \, $ atau
$ \sqrt{x^2 - 4x + 4} = -(x-2) \, $ untuk batas $ x < 2 , \, $
Hasil Integral :
$ \begin{align} \int \limits_0^5 \sqrt{x^2 - 4x + 4} dx & = \int \limits_0^2 \sqrt{x^2 - 4x + 4} dx + \int \limits_2^5 \sqrt{x^2 - 4x + 4} dx \\ & = \int \limits_0^2 -(x-2) dx + \int \limits_2^5 (x-2) dx \\ & = \int \limits_0^2 (2-x) dx + \int \limits_2^5 (x-2) dx \\ & = [2x - \frac{1}{2}x^2]_0^2 + [\frac{1}{2}x^2 - 2x]_2^5 \\ & = [(2.2 - \frac{1}{2}.2^2) - (2.0 - \frac{1}{2}.0^2) ] + [(\frac{1}{2}.5^2 - 2.5) - (\frac{1}{2}.2^2 - 2.2)] \\ & = [(4 - 2) - (0) ] + [(\frac{25}{2} - 10) - (2 - 4)] \\ & = [2 ] + [(\frac{5}{2} ) - (-2)] \\ & = [2 ] + [(2,5 ) + 2] \\ & = 6,5 \end{align} $
Jadi, hasil dari $ \int \limits_0^5 \sqrt{x^2 - 4x + 4} dx = 6,5 $..
Semoga pembahasan soal Contoh Soal dan Pembahasan Integral Fungsi Harga Mutlak ini bermanfaat untuk anda. Jika ada pertanyaan atau soal yang ingin di bahas bisa pilih menu tanya soal. Terima kasih dan sampai jumpa di masalah masalah berikutnya guys.
Untuk materi dan cara penyelesaian kamu rekomendasikan kamu baca dulu di: Cara Menyelesaikan Integral Fungsi MutlakSoal 1. $ \int \limits_{-1}^3 | x - 1| dx $
$ |x-1| = (x-1) \, $ untuk batas $ x \geq 1 , \, $ atau
$ |x-1| = -(x-1) \, $ untuk batas $ x < 1 , \, $
Hasil Integral
$ \begin{align} \int \limits_{-1}^3 | x - 1| dx & = \int \limits_{-1}^3 | x - 1| dx + \int \limits_{-1}^3 | x - 1| dx \\ & = \int \limits_{-1}^1 | x - 1| dx + \int \limits_{1}^3 | x - 1| dx \\ & = \int \limits_{-1}^1 -(x-1) dx + \int \limits_{1}^3 (x-1) dx \\ & = \int \limits_{-1}^1 (1-x) dx + \int \limits_{1}^3 (x-1) dx \\ & = [x - \frac{1}{2}x^2 ]_{-1}^1 + [\frac{1}{2}x^2 - x]_{1}^3 \\ & = [(1 - \frac{1}{2}.1^2) - ((-1) - \frac{1}{2}(-1)^2 ) ] + [( \frac{1}{2}.3^2 - 3) - ( \frac{1}{2}.1^2 - 1) ] \\ & = [(1 - \frac{1}{2} ) - (-1 - \frac{1}{2} ) ] + [( \frac{9}{2} - 3 ) - ( \frac{1}{2} - 1) ] \\ & = [(\frac{1}{2} ) - (-\frac{3}{2}) ] + [( \frac{3}{2} ) - ( - \frac{1}{2} ) ] \\ & = [ \frac{4}{2} ] + [ \frac{4}{2} ] \\ & = [ 2 ] + [ 2 ] \\ & = 4 \end{align} $
Jadi, hasil dari $ \int \limits_{-1}^3 | x - 1| dx = 4 $.
Soal 2. $ \int \limits_0^5 \sqrt{x^2 - 4x + 4} dx $
$ \sqrt{x^2 - 4x + 4} = (x-2) \, $ untuk batas $ x \geq 2 , \, $ atau
$ \sqrt{x^2 - 4x + 4} = -(x-2) \, $ untuk batas $ x < 2 , \, $
Hasil Integral :
$ \begin{align} \int \limits_0^5 \sqrt{x^2 - 4x + 4} dx & = \int \limits_0^2 \sqrt{x^2 - 4x + 4} dx + \int \limits_2^5 \sqrt{x^2 - 4x + 4} dx \\ & = \int \limits_0^2 -(x-2) dx + \int \limits_2^5 (x-2) dx \\ & = \int \limits_0^2 (2-x) dx + \int \limits_2^5 (x-2) dx \\ & = [2x - \frac{1}{2}x^2]_0^2 + [\frac{1}{2}x^2 - 2x]_2^5 \\ & = [(2.2 - \frac{1}{2}.2^2) - (2.0 - \frac{1}{2}.0^2) ] + [(\frac{1}{2}.5^2 - 2.5) - (\frac{1}{2}.2^2 - 2.2)] \\ & = [(4 - 2) - (0) ] + [(\frac{25}{2} - 10) - (2 - 4)] \\ & = [2 ] + [(\frac{5}{2} ) - (-2)] \\ & = [2 ] + [(2,5 ) + 2] \\ & = 6,5 \end{align} $
Jadi, hasil dari $ \int \limits_0^5 \sqrt{x^2 - 4x + 4} dx = 6,5 $..
Semoga pembahasan soal Contoh Soal dan Pembahasan Integral Fungsi Harga Mutlak ini bermanfaat untuk anda. Jika ada pertanyaan atau soal yang ingin di bahas bisa pilih menu tanya soal. Terima kasih dan sampai jumpa di masalah masalah berikutnya guys.
Cari Soal dan Pembahasan tentang integral
Loading...