-->

Soal dan Penyelesaian Integral Fungsi Nilai Mutlak

Topik Bahasan
Nilai dari integral $ \int \limits_{-2}^1 \sqrt{9x^4 - 12x^3 + 4x^2 } dx $ ?
Penyelesaian :
Untuk materi dan cara penyelesaian kamu rekomendasikan kamu baca dulu di: Cara Menyelesaikan Integral Fungsi Mutlak.
Bentuk : $ \sqrt{9x^4 - 12x^3 + 4x^2 } = \sqrt{(3x^2 - 2x)^2 } = |3x^2 - 2x| \, $ (sifat mutlak).
Syarat Positif : $ 3x^2 - 2x \geq 0 \rightarrow x(3x - 2) \geq 0 \rightarrow x = 0 \vee x = \frac{2}{3} $,
sehingga syarat positifnya adalah $ x \leq 0 \vee x \geq \frac{2}{3} $

Syarat negatif : $ 3x^2 - 2x < 0 \rightarrow 0 < x < \frac{2}{3} $,
$ \sqrt{9x^4 - 12x^3 + 4x^2 } = |3x^2 - 2x| = \left\{ \begin{array}{cc} 3x^2 - 2x & , x \leq 0 \vee x \geq \frac{2}{3} \\ -(3x^2 - 2x) & , 0 < x < \frac{2}{3} \end{array} \right. $
Sehingga fungsi $ \sqrt{9x^4 - 12x^3 + 4x^2 } = |3x^2 - 2x| \, $ dapat diubah menjadi :
$ \sqrt{9x^4 - 12x^3 + 4x^2 } = (3x^2 - 2x) \, $ untuk batas $ x \leq 0 \vee x \geq \frac{2}{3} , \, $ atau
$ \sqrt{9x^4 - 12x^3 + 4x^2 } = -(3x^2 - 2x) \, $ untuk batas $ 0 < x < \frac{2}{3} $
Menentukan hasil integralnya berdasarkan batas nilai mutlaknya :
$ \begin{align} \int \limits_{-2}^1 \sqrt{9x^4 - 12x^3 + 4x^2 } dx & = \int \limits_{-2}^0 \sqrt{9x^4 - 12x^3 + 4x^2 } dx + \int \limits_{0}^\frac{2}{3} \sqrt{9x^4 - 12x^3 + 4x^2 } dx \\ & + \int \limits_{\frac{2}{3}}^1 \sqrt{9x^4 - 12x^3 + 4x^2 } dx \\ & = \int \limits_{-2}^0 (3x^2 - 2x) dx + \int \limits_{0}^\frac{2}{3} -(3x^2 - 2x) dx + \int \limits_{\frac{2}{3}}^1 (3x^2 - 2x) dx \\ & = \int \limits_{-2}^0 (3x^2 - 2x) dx + \int \limits_{0}^\frac{2}{3} (-3x^2 + 2x) dx + \int \limits_{\frac{2}{3}}^1 (3x^2 - 2x) dx \\ & = [x^3- x^2]_{-2}^0 + [-x^3+ x^2]_{0}^\frac{2}{3} + [x^3- x^2]_{\frac{2}{3}}^1 \end{align} $
Jadi, hasil dari $ \int \limits_{-2}^1 \sqrt{9x^4 - 12x^3 + 4x^2 } dx \, $ bisa teman-teman hitung sendiri dari bentuk integral yang terakhirnya..

Cari Soal dan Pembahasan tentang

Loading...