-->

Soal dan Penyelesaian Integral Tak tentu

Topik Bahasan


Adapun rumus integral tak tentu fungsi aljabar secara umum sebagai berikut.
 $ \int ax^n dx = \frac{a}{n+1}x^{n+1} + c $
Dimana a≠0 dan n≠-1 , a, n ε Bilangan Real. Sementara itu, untuk pengecualian pangkat (n) = -1. Maka berlaku:
$ \int ax^{-1} dx = \int \frac{a}{x} dx = a \ln x + c $
dimana  $ \ln x \, $ dibaca "len $ x $" yang sama dengan fungsi logaritma dengan basis $ e = 2,718... $
1). $ \int 6x^3 dx $
$ \int 6x^3 dx , \, $ artinya $ a = 6, n = 3 $
$ \int 6x^3 dx = \frac{6}{3+1}x^{3+1} + c = \frac{6}{4}x^4 + c = \frac{3}{2}x^4 + c $

2). $ \int \sqrt{x} dx $
$ \int \sqrt{x} dx = \int x^\frac{1}{2} dx , \, $ artinya $ n = \frac{1}{2} $
$ \begin{align} \int \sqrt{x} dx & = \int x^\frac{1}{2} dx \\ & = \frac{1}{\frac{1}{2} + 1 } x^{\frac{1}{2} + 1} + c \\ & = \frac{1}{\frac{3}{2}} x^\frac{3}{2} + c \\ & = \frac{2}{3}x^\frac{3}{2} + c \\ & = \frac{2}{3}x^{1 + \frac{1}{2} } + c = \frac{2}{3}x^1.x^\frac{1}{2} + c \\ & = \frac{2}{3}x\sqrt{x} + c \end{align} $
Jadi, hasil $ \int \sqrt{x} dx = \frac{2}{3}x^\frac{3}{2} + c = \frac{2}{3}x\sqrt{x} + c $
3). $ \int x^2.\sqrt[3]{x^2} dx $
$ \int x^2.\sqrt[3]{x^2} dx = \int x^2.x^\frac{2}{3} dx = \int x^{2 + \frac{2}{3}} dx = \int x^\frac{8}{3} dx , \, $ artinya $ n = \frac{8}{3} $
$ \begin{align} \int x^2.\sqrt[3]{x^2} dx & = \int x^\frac{8}{3} dx \\ & = \frac{1}{\frac{8}{3} + 1} x^{\frac{8}{3} + 1} + c \\ & = \frac{1}{\frac{11}{3} } x^{\frac{11}{3} } + c \\ & = \frac{3}{11} x^{\frac{11}{3} } + c \\ & = \frac{3}{11} x^{3 + \frac{2}{3} } + c \\ & = \frac{3}{11} x^3 . x^{ \frac{2}{3} } + c \\ & = \frac{3}{11} x^3 \sqrt[3]{x^2} + c \end{align} $

Jadi, hasil $ \int x^2.\sqrt[3]{x^2} dx = \frac{3}{11} x^{\frac{11}{3} } + c = \frac{3}{11} x^3 \sqrt[3]{x^2} + c $.

Semoga pembahasan soal Soal dan Penyelesaian Integral Tak tentu ini bermanfaat untuk anda. Jika ada pertanyaan atau soal yang ingin di bahas bisa pilih menu tanya soal. Terima kasih dan sampai jumpa di masalah masalah berikutnya guys.

Cari Soal dan Pembahasan tentang

Loading...