Topik Bahasan
peluang
Tentukan nilai $ n \, $ dari persamaan kombinasi $ C_2^n = 4n + 5 $ ,
dan tentukan nilai $ C_9^n $.
Penyelesaian :
Uraikan sesuai rumus Kombinasi
$ \begin{align} C_2^n & = 4n + 5 \\ \frac{n!}{(n-2)!.2!} & = 4n + 5 \\ \frac{n.(n-1).(n-2)!}{(n-2)!.2.1} & = 4n + 5 \\ \frac{n.(n-1) }{2} & = 4n + 5 \\ n^2 - n & = 2(4n + 5) \\ n^2 - n & = 8n + 10 \\ n^2 - 9n - 10 & = 0 \\ (n+1)(n-10) & = 0 \\ n = -1 \vee n & = 10 \end{align} $
Karena $ n \, $ bilangan asli, maka yang memenuhi adalah $ n = 10 $.
Sekarang tentukan nilai dari $ C_9^n $
$ \begin{align} C_9^n = C_9^{10} & = \frac{10!}{(10-1)!.1!} = \frac{10!}{9!.1!} = \frac{10.9!}{9!} = 10 \end{align} $.
Semoga pembahasan soal Soal Kombinasi Mencari Nilai n ini bermanfaat untuk anda. Jika ada pertanyaan atau soal yang ingin di bahas bisa pilih menu tanya soal. Terima kasih dan sampai jumpa di masalah masalah berikutnya guys.
Tentukan nilai $ n \, $ dari persamaan kombinasi $ C_2^n = 4n + 5 $ ,
dan tentukan nilai $ C_9^n $.
Penyelesaian :
Uraikan sesuai rumus Kombinasi
Rumus Kombinasi:
$ C_k^n = \frac{n!}{(n-k)!.k!} \, $
dengan $ n \geq k , \, $ dan $ n , \, k \, $ merupakan bilangan asli.
Bentuk $ n! \, $ dibaca "$n \, $ faktorial".
$ n! = n.(n-1).(n-2).(n-3)...3.2.1 \, $ dan nilai $ 0! = 1 $
$ C_k^n = \frac{n!}{(n-k)!.k!} \, $
dengan $ n \geq k , \, $ dan $ n , \, k \, $ merupakan bilangan asli.
Bentuk $ n! \, $ dibaca "$n \, $ faktorial".
$ n! = n.(n-1).(n-2).(n-3)...3.2.1 \, $ dan nilai $ 0! = 1 $
$ \begin{align} C_2^n & = 4n + 5 \\ \frac{n!}{(n-2)!.2!} & = 4n + 5 \\ \frac{n.(n-1).(n-2)!}{(n-2)!.2.1} & = 4n + 5 \\ \frac{n.(n-1) }{2} & = 4n + 5 \\ n^2 - n & = 2(4n + 5) \\ n^2 - n & = 8n + 10 \\ n^2 - 9n - 10 & = 0 \\ (n+1)(n-10) & = 0 \\ n = -1 \vee n & = 10 \end{align} $
Karena $ n \, $ bilangan asli, maka yang memenuhi adalah $ n = 10 $.
Sekarang tentukan nilai dari $ C_9^n $
$ \begin{align} C_9^n = C_9^{10} & = \frac{10!}{(10-1)!.1!} = \frac{10!}{9!.1!} = \frac{10.9!}{9!} = 10 \end{align} $.
Semoga pembahasan soal Soal Kombinasi Mencari Nilai n ini bermanfaat untuk anda. Jika ada pertanyaan atau soal yang ingin di bahas bisa pilih menu tanya soal. Terima kasih dan sampai jumpa di masalah masalah berikutnya guys.
Cari Soal dan Pembahasan tentang peluang
Loading...