-->

Contoh Soal Menghitung Luas Daerah dengan Integral tanpa Gambar Grafik

Topik Bahasan
Soal Hitunglah luas daerah yang dibatasi oleh kurva $ y = x^2 - 6x + 8 , \, $ sumbu X, garis $ x = 0 \, $ dan garis $ x = 3 $.
Untuk Langkahnya silakan baca: Cara Menghitung Luas Daerah dengan Integral tanpa Menggambar
Penyelesaian :
Titik potong terhadap sumbu X adalah $ x = 2 \, $ dan $ x = 4 $.
Batas yang diminta adalah garis $ x = 0 \, $ dan garis $ x = 3 $, artinya dari titik potong tersebut ada pembatas $ x = 2 \, $ yang membagi daerah untuk $ x = 0 \, $ sampai $ x = 3 $, ini menandakan ada dua daerah yang akan dihitung luasnya yaitu daerah 0 sampai 2 dan daerah 2 sampai 3.

Letak daerah arsiran
Daerah pertama 0 sampai 2, substitusi $ x = 1 $
$ \begin{align} x = 1 \rightarrow y & = x^2 -6x + 8 \\ y & = 1^2 -6.1 + 8 \\ & = 1 -1 + 8 \\ & = 8 \end{align} $
Hasil fungsinya positif , artinya daerah arsiran ada di atas sumbu X untuk daerah 0 sampai 2.
Daerah kedua 2 sampai 3, substitusi $ x = 2,5 $
$ \begin{align} x = 2,5 \rightarrow y & = x^2 -6x + 8 \\ y & = (2,5)^2 -6.(2,5) + 8 \\ & = 6,25 -15 + 8    \\ & = -0,75 \end{align} $

Karena hasil fungsinya negatif , artinya daerah arsiran ada di bawah sumbu X untuk daerah 2 sampai 3, agar luasnya positif maka harus kita kalikan negatif.

Menghitung luas
$ \begin{align} \text{Luas } & = L_1 + L_2 \\ & = \int \limits_0^2 x^2 -6x + 8 dx + (- \int \limits_2^3 x^2 -6x + 8 dx ) \\ & = \int \limits_0^2 x^2 -6x + 8 dx - \int \limits_2^3 x^2 -6x + 8 dx \end{align} $
Jadi, luas daerah yang dimaksud bisa dihitung dari bentuk integral di atas..

Semoga pembahasan soal Contoh Soal Menghitung Luas Daerah dengan Integral tanpa Gambar Grafik ini bermanfaat untuk anda. Jika ada pertanyaan atau soal yang ingin di bahas bisa pilih menu tanya soal. Terima kasih dan sampai jumpa di masalah masalah berikutnya guys.

Cari Soal dan Pembahasan tentang

Loading...