Topik Bahasan
geometri bidang
Anda harus paham materi dan silakan baca jika belum paham teori dan rumus dasarnya:
Semoga pembahasan soal Contoh Soal Menghitung Panjang Garis Berat Segitiga ini bermanfaat untuk anda. Jika ada pertanyaan atau soal yang ingin di bahas bisa pilih menu tanya soal. Terima kasih dan sampai jumpa di masalah masalah berikutnya guys.
Anda harus paham materi dan silakan baca jika belum paham teori dan rumus dasarnya:
Soal:
Terdapat segitiga ABC dengan garis berat AD = $ \sqrt{10}, \, BE = \sqrt{31}, \, $ CF dan panjang AB = 4 cm. Tentukan panjang sisi-sisi segitiga lainnya dan panjang garis berat CF!
Penyelesaian:
Persamaan dari panjang garis berat.
Garis berat $ AD = \sqrt{10} $
$ \begin{align} AD^2 & = \frac{1}{2} AB^2 + \frac{1}{2}AC^2 - \frac{1}{4} BC^2 \\ (\sqrt{10})^2 & = \frac{1}{2} .4^2 + \frac{1}{2} b^2 - \frac{1}{4} a^2 \\ 10 & = 8 + \frac{1}{2} b^2 - \frac{1}{4} a^2 \, \, \, \, \, \text{(kali 4)} \\ 40 & = 32 + 2b^2 - a^2 \\ -a^2 + 2b^2 & = 8 \, \, \, \, \, \text{....pers(i)} \end{align} $
Garis berat $ BE = \sqrt{31} $
$ \begin{align} BE^2 & = \frac{1}{2} AB^2 + \frac{1}{2}BC^2 - \frac{1}{4} AC^2 \\ (\sqrt{31})^2 & = \frac{1}{2} .4^2 + \frac{1}{2} a^2 - \frac{1}{4} b^2 \\ 31 & = 8 + \frac{1}{2} a^2 - \frac{1}{4} b^2 \, \, \, \, \, \text{(kali 4)} \\ 124 & = 32 + 2a^2 - b^2 \\ 2a^2 - b^2 & = 92 \, \, \, \, \, \text{....pers(ii)} \end{align} $
Eliminasi pers(i) dan pers(ii) :
$ \begin{array}{c|c|cc} -a^2 + 2b^2 = 8 & \text{kali 2} & -2a^2 + 4b^2 = 16 & \\ 2a^2 - b^2 = 92 & \text{kali 2} & 2a^2 - b^2 = 92 & + \\ \hline & & 3b^2 = 108 & \\ & & b^2 = 36 & \\ & & b = 6 & \end{array} $
Pers(i) : $ -a^2 + 2b^2 = 8 \rightarrow -a^2 + 2. 6^2 = 8 \rightarrow a^2 = 64 \rightarrow a = 8 $.
Kita peroleh panjang sisi-sisi segitiganya : AB = 4 cm, BC = 8 cm, dan AC = 6 cm.
Panjang garis berat CF,
$ \begin{align} CF^2 & = \frac{1}{2} BC^2 + \frac{1}{2}AC^2 - \frac{1}{4} AB^2 \\ & = \frac{1}{2} .8^2 + \frac{1}{2}.6^2 - \frac{1}{4} .4^2 \\ & = 32 + 18 - 4 \\ CF^2 & = 46 \\ CF & = \sqrt{46} \end{align} $
Jadi, panjang garis berat $ CF = \sqrt{46} \, $ cm
.
Garis berat $ AD = \sqrt{10} $
$ \begin{align} AD^2 & = \frac{1}{2} AB^2 + \frac{1}{2}AC^2 - \frac{1}{4} BC^2 \\ (\sqrt{10})^2 & = \frac{1}{2} .4^2 + \frac{1}{2} b^2 - \frac{1}{4} a^2 \\ 10 & = 8 + \frac{1}{2} b^2 - \frac{1}{4} a^2 \, \, \, \, \, \text{(kali 4)} \\ 40 & = 32 + 2b^2 - a^2 \\ -a^2 + 2b^2 & = 8 \, \, \, \, \, \text{....pers(i)} \end{align} $
Garis berat $ BE = \sqrt{31} $
$ \begin{align} BE^2 & = \frac{1}{2} AB^2 + \frac{1}{2}BC^2 - \frac{1}{4} AC^2 \\ (\sqrt{31})^2 & = \frac{1}{2} .4^2 + \frac{1}{2} a^2 - \frac{1}{4} b^2 \\ 31 & = 8 + \frac{1}{2} a^2 - \frac{1}{4} b^2 \, \, \, \, \, \text{(kali 4)} \\ 124 & = 32 + 2a^2 - b^2 \\ 2a^2 - b^2 & = 92 \, \, \, \, \, \text{....pers(ii)} \end{align} $
Eliminasi pers(i) dan pers(ii) :
$ \begin{array}{c|c|cc} -a^2 + 2b^2 = 8 & \text{kali 2} & -2a^2 + 4b^2 = 16 & \\ 2a^2 - b^2 = 92 & \text{kali 2} & 2a^2 - b^2 = 92 & + \\ \hline & & 3b^2 = 108 & \\ & & b^2 = 36 & \\ & & b = 6 & \end{array} $
Pers(i) : $ -a^2 + 2b^2 = 8 \rightarrow -a^2 + 2. 6^2 = 8 \rightarrow a^2 = 64 \rightarrow a = 8 $.
Kita peroleh panjang sisi-sisi segitiganya : AB = 4 cm, BC = 8 cm, dan AC = 6 cm.
Panjang garis berat CF,
$ \begin{align} CF^2 & = \frac{1}{2} BC^2 + \frac{1}{2}AC^2 - \frac{1}{4} AB^2 \\ & = \frac{1}{2} .8^2 + \frac{1}{2}.6^2 - \frac{1}{4} .4^2 \\ & = 32 + 18 - 4 \\ CF^2 & = 46 \\ CF & = \sqrt{46} \end{align} $
Jadi, panjang garis berat $ CF = \sqrt{46} \, $ cm
Semoga pembahasan soal Contoh Soal Menghitung Panjang Garis Berat Segitiga ini bermanfaat untuk anda. Jika ada pertanyaan atau soal yang ingin di bahas bisa pilih menu tanya soal. Terima kasih dan sampai jumpa di masalah masalah berikutnya guys.
Cari Soal dan Pembahasan tentang geometri bidang
Loading...