-->

Pembuktian Dalil pada Garis Bagi

Topik Bahasan
 Garis bagi sudut sebuah segitiga membagi sisi yang didepannya menjadi dua bagian yang rasio panjangnya sama dengan rasio sisi-sisi yang berdekatan dengan bagian tersebut, perbandingan yang dimaksud yaitu $ BD : DC = AB : AC $

Akan dibuktikan pernyataan di atas:
Tarik garis tinggi dari titik D yaitu garis tinggi DE dan DF.
Perhatikan segitiga ADF dan segitiga ADE,
Sudut FAD = sudut EAD (sudut sama),
Sudut AFD = sudut AED (sudut sama),
Sisi AD beripit pada kedua segitiga (sisi sama).
Karena memenuhi sudut-sudut-sisi (yang sama pada kedua segitiga), maka segitiga ADF dan segitiga ADE kongruen (bentuk dan ukuran sama). Sehingga panjang garis tinggi DE = DF.

Perhatikan segitiga ABD dan segitiga ACD,
Perbandingan luasnya : ingat DE = DF,
$ \frac{\text{Luas ABD}}{\text{Luas ACD}} = \frac{\frac{1}{2}AB.DF}{\frac{1}{2}AC.DF} = \frac{AB}{AC} \, $ ....pers(i)

Segitiga ABD dengan alas BD dan segitiga ACD dengan alas DC mempunyai tinggi yang sama, misalkan $ t_1 $.
$ \frac{\text{Luas ABD}}{\text{Luas ACD}} = \frac{\frac{1}{2}BD.t_1}{\frac{1}{2}DC.t_1} = \frac{BD}{DC} = \frac{m}{n} \, $ ....pers(ii)
Dari pers(i) dan pers(ii) kita peroleh : $ \frac{m}{n} = \frac{AB}{AC} \, $ atau $ \frac{m}{n} = \frac{c}{b} $..

Semoga pembahasan soal Pembuktian Dalil pada Garis Bagi ini bermanfaat untuk anda. Jika ada pertanyaan atau soal yang ingin di bahas bisa pilih menu tanya soal. Terima kasih dan sampai jumpa di masalah masalah berikutnya guys.

Cari Soal dan Pembahasan tentang

Loading...