-->

Soal-Jawab Menentukan Garis Tinggi Segitiga

Topik Bahasan
Sebuah segitiga ABC dengan AB = 5 cm, BC = 7 cm, dan AC = 6 cm. Garis tinggi AD dan BE berpotongan di titik O. Tentukan perbandingan panjang AO:OD dan perbandingan BO : OE.

Penyelesaian :
Gunakan garis tinggi (dalil proyeksi) dan dalil Menelaus.

Untuk Penjelasan Silakanbaca referensi :

  1. Dalil Proyeksi
  2. Dalil Menelaus

Dalil proyeksi untuk garis tinggi AD dan BE.
garis tinggi AD :
$ \begin{align} AC^2 & = AB^2 + BC^2 - 2 . BC . BD \\ 6^2 & = 5^2 + 7^2 - 2 . 7 . BD \\ 36 & = 25 + 49 - 14. BD \\ 36 & = 25 + 49 - 14. BD \\ 14BD & = 38 \\ BD & = \frac{38}{14} = \frac{19}{7} \end{align} $

Panjang $ DC = 7 - BD = 7 - \frac{19}{7} = \frac{30}{7} $.

garis tinggi BE :
$ \begin{align} BC^2 & = AB^2 + AC^2 - 2 . AC . AE \\ 7^2 & = 5^2 + 6^2 - 2 . 6 . AE \\ 49 & = 25 + 36 - 12. AE \\ AE & = 1 \end{align} $

Sehingga panjang $ CE = 6 - AE = 6 - 1 = 5 $.

Dalil Menelaus untuk perbandingan garis,

Perbandingan AO : OD,
$ \begin{align} \frac{DO}{AO}. \frac{AE}{EC}. \frac{CB}{DB} & = 1 \\ \frac{DO}{AO}. \frac{1}{5}. \frac{7}{\frac{19}{7}} & = 1 \\ \frac{DO}{AO}. \frac{1}{5}. \frac{49}{19} & = 1 \\ \frac{DO}{AO}. \frac{49}{95} & = 1 \\ \frac{DO}{AO} & = \frac{95}{49} \end{align} $
Sehingga perbandingan AO : DO = 49 : 95.

Perbandingan BO : OE,
$ \begin{align} \frac{EO}{OB}. \frac{BD}{DC}. \frac{CA}{AE} & = 1 \\ \frac{EO}{OB}. \frac{\frac{19}{7}}{\frac{30}{7}}. \frac{6}{1} & = 1 \\ \frac{EO}{OB}. \frac{19}{30}. \frac{6}{1} & = 1 \\ \frac{EO}{OB}. \frac{19}{5} & = 1 \\ \frac{EO}{OB} & = \frac{5}{19} \end{align} $

Sehingga perbandingan BO : OE = 19 : 5..

.

Semoga pembahasan soal Soal-Jawab Menentukan Garis Tinggi Segitiga ini bermanfaat untuk anda. Jika ada pertanyaan atau soal yang ingin di bahas bisa pilih menu tanya soal. Terima kasih dan sampai jumpa di masalah masalah berikutnya guys.

Cari Soal dan Pembahasan tentang

Loading...