-->

Rumus, Soal Pembahasan Kedudukan Garis Terhadap Lingkaran

Topik Bahasan
Untuk menentukan apakah garis memotong, menyinggung atau tidak mengenai lingkaran pertama jika terdapat garis y=mx+n, maka subtitusikan ke persamaan lingkaran nilai y tersebut. Lalu cari diskriminan ($ D = b^2 - 4ac $). Posisinya akan didefenisikan sebagai berikut,

  1. Jika $ D < 0 $ , maka garis tidak menyentuh lingkaran  
  2.  Jika $ D = 0 $, maka maka garis menyinggung lingkaran
  3.  Jika $D > 0 $, maka garis memotong lingkaran di dua titik.
Contoh Soal:

Soal 1. Tentukan posisi garis $ x - y + 1 = 0 $ terhadap lingkaran $ x^2 + y^2 = 25$. Jika berpotongan, tentukan titik potongnya. !
Penyelesaian :
Substitusi persamaan garis ke persamaan lingkaran
$ x - y + 1 = 0 \rightarrow y = x + 1 $
Persamaan lingkarannya : $ x^2 + y^2 = 25 $
$ \begin{align} x^2 + y^2 & = 25 \\ x^2 + (x+1)^2 & = 25 \\ x^2 + (x^2 + 2x + 1) & = 25 \\ 2x^2 + 2x + - 24 & = 0 \, \, \, \, \, \text{(bagi 2)} \\ x^2 + x + - 12 & = 0 \\ a = 1, \, b = 1, \, c & = -12 \\ D & = b^2 - 4ac \\ & = 1^2 - 4.1.(-12) \\ & = 1 + 48 \\ & = 49 \end{align} $
Diperoleh $ D = 49 > 0 \, $ , artinya kedudukan garis $ y = x + 1 \, $ memotong lingkaran $ x^2 + y^2 = 25 $ di dua titik yang berbeda.
Menentukan titik potong garis dan lingkaran.
$ \begin{align} x^2 + x + - 12 & = 0 \\ (x - 3)(x + 4 ) & = 0 \\ x = 3 \vee x & = -4 \\ x = 3 \rightarrow y & = x + 1 \\ y & = 3 + 1 = 4 \\ x = -4 \rightarrow y & = x + 1 \\ y & = -4 + 1 = -3 \end{align} $
Sehingga titik potong garis terhadap lingkaran adalah (3,4) dan (-4,-3).

Soal 2. Diketahui garis lurus $ g $ dengan persamaan $ y = mx + 2 $ dan lingkaran L dengan persamaan $x^2 + y^2 = 4$. Agar garis $ g $ memotong lingkaran L di dua titik yang berbeda, tentukan nilai $m $ yang memenuhi.!
Penyelesaian :
Substitusi garis ke persamaan lingkaran.
$ \begin{align} y = mx + 2 \rightarrow x^2 + y^2 & = 4 \\ x^2 + (mx+2)^2 & = 4 \\ x^2 + (m^2x^2 + 4mx + 4) & = 4 \\ (m^2+1)x^2 + 4mx & = 0 \\ a = m^2 + 1, \, b = 4m, \, c & = 0 \\ D & = b^2 - 4ac \\ & = (4m)^2 - 4.(m^2+1).0 \\ & = 16m^2 - 0 \\ & = 16m^2 \end{align} $
Syarat garis memotong lingkaran di dua titik : $ D > 0 $
$ \begin{align} D & > 0 \\ 16m^2 & > 0 \\ m^2 & > 0 \end{align} $
Karena nilai $ m^2 \, $ selalu positif, maka $ m^2 > 0 \, $ terpenuhi untuk semua nilai $ m \, $ kecuali $ m = 0 . \, $
Jadi, penyelesaiannya : $ \{ m \in R , \, m \neq 0 \} \, $ atau bisa ditulis $ \{ m < 0 \vee m > 0 \} $ .


.

Semoga pembahasan soal Rumus, Soal Pembahasan Kedudukan Garis Terhadap Lingkaran ini bermanfaat untuk anda. Jika ada pertanyaan atau soal yang ingin di bahas bisa pilih menu tanya soal. Terima kasih dan sampai jumpa di masalah masalah berikutnya guys.

Cari Soal dan Pembahasan tentang

Loading...