-->

Soal-Jawab : Peluang Bersalaman dalam Pesta

Topik Bahasan
terdapat 6 pasang suami istri menghadiri pesta dan mereka saling bersalaman. Misalkan E adalah kejadian banyaknya salaman kecuali dengan pasangannya sendiri, tentukan peluang kejadian E.

Penyelesaian :
 Menentukan banyak anggota ruang sampel : $ n(S) $,
Untuk kasus salaman, misalkan si A salaman dengan si B akan sama saja dengan si B salaman dengan si A, artinya URUTAN Tidak diperhatikan, sehingga menggunakan kombinasi.
Ada 6 pasang suami istri, total orang ada $ 6 \times 2 = 12\, $ orang.
Salaman terjadi antara dua orang, sehingga kita memilih 2 orang dari 12 orang yang ada.
$ \begin{align} n(S) = C_2^{12} = \frac{12!}{(12-2)!2!} = \frac{12!}{10!.2!} = \frac{12.11.10!}{10!.(2.1)} = 66 \end{align} $
Menentukan $ n(E) $ :
E adalah kejadian salaman kecuali dengan pasangannya, artinya ada 6 salaman yang tidak dihitung dari 66 pasangan yang terjadi, sehingga $ n(E) = 66 - 6 = 60 $.
 Menentukan peluangnya,
$ P(E) = \frac{n(E)}{n(S)} = \frac{60}{66} = \frac{10}{11} $.
Jadi, peluang kejadian E adalah $ \frac{10}{11} $.

.

Semoga pembahasan soal Soal-Jawab : Peluang Bersalaman dalam Pesta ini bermanfaat untuk anda. Jika ada pertanyaan atau soal yang ingin di bahas bisa pilih menu tanya soal. Terima kasih dan sampai jumpa di masalah masalah berikutnya guys.

Cari Soal dan Pembahasan tentang

Loading...