Topik Bahasan
Kode 924 2019,
limit,
UM UGM
Jika $ p>0 $ dan $ \displaystyle \lim_{x \to p} \frac{x^3+px^2+qx}{x-p}=12 $ , maka nilai $ p - q $ adalah .....
A). $ 14 \, $ B). $ 1 \, $ C). $ 8 \, $ D). $ 5 \, $ E). $ 3 $
Harus menguasai
Aplikasi Turunan pada limit (L'Hopital) :
$ \displaystyle \lim_{x \to k} \frac{f(x)}{g(x)} = \frac{0}{0} $ memiliki penyelesaian $ \displaystyle \lim_{x \to k} \frac{f(x)}{g(x)} = \displaystyle \lim_{x \to k} \frac{f^\prime (x)}{g^\prime (x)} $
Turunan aljabar :
$ y = ax^n \rightarrow y^\prime = n.ax^{n-1} $
Pembahasan
Periksa nilai limitnya :
$ \begin{align} \displaystyle \lim_{x \to p} \frac{x^3+px^2+qx}{x-p} & = 12 \\ \frac{p^3+p.p^2+q.p}{p-p} & = 12 \\ \frac{p^3+p^3+pq}{0} & = 12 \\ \frac{2p^3+pq}{0} & = 12 \end{align} $
Bentuk $ \frac{2p^3+pq}{0} $ jika kita hitung maka hasilnya $ \infty $, sementara hasil pada soal adalah 12, ini artinya bentuk limitnya harus tak tentu yaitu $ \frac{0}{0} $ agar limitnya bisa kita proses lagi sehingga hasilnya menjadi 12.
$ \frac{2p^3+pq}{0} = \frac{0}{0} \rightarrow 2p^3+pq = 0 $
Bagi dengan $ p $, kita peroleh $ 2p^2 + q = 0 \rightarrow q = -2p^2 \, $ ......(i)
Turunan pada limitnya :
$ \begin{align} \displaystyle \lim_{x \to p} \frac{x^3+px^2+qx}{x-p} & = 12 \\ \displaystyle \lim_{x \to p} \frac{3x^2+ 2px +q}{1} & = 12 \\ 3p^2+ 2p.p +q & = 12 \\ 5p^2 +q & = 12 \, \, \, \, \, \, \text{....(ii)} \end{align} $
Substitusi $ q = -2p^2 $ ke pers(ii) :
$ \begin{align} 5p^2 +q & = 12 \\ 5p^2 + (-2p^2 ) & = 12 \\ 3p^2 & = 12 \\ p^2 & = 4 \\ p & = \pm 2 \end{align} $
Karena $ p > 0 $ , maka $ p = 2 $ yang memenuhi.
sehingga $ q = -2p^2 = -2(2)^2 = - 8 $
Menentukan nilai $ p - q $ :
$ \begin{align} p - q & = 2 - (-8) = 10 \end{align} $
Jadi, nilai $ p - q = 10 . \, \heartsuit $ .
Semoga pembahasan soal Soal Jawab Limit UM UGM 2019 MAT IPA Kode 924 ini bermanfaat untuk anda. Jika ada pertanyaan atau soal yang ingin di bahas bisa pilih menu tanya soal. Terima kasih dan sampai jumpa di masalah masalah berikutnya guys.
Jika $ p>0 $ dan $ \displaystyle \lim_{x \to p} \frac{x^3+px^2+qx}{x-p}=12 $ , maka nilai $ p - q $ adalah .....
A). $ 14 \, $ B). $ 1 \, $ C). $ 8 \, $ D). $ 5 \, $ E). $ 3 $
Harus menguasai
Aplikasi Turunan pada limit (L'Hopital) :
$ \displaystyle \lim_{x \to k} \frac{f(x)}{g(x)} = \frac{0}{0} $ memiliki penyelesaian $ \displaystyle \lim_{x \to k} \frac{f(x)}{g(x)} = \displaystyle \lim_{x \to k} \frac{f^\prime (x)}{g^\prime (x)} $
Turunan aljabar :
$ y = ax^n \rightarrow y^\prime = n.ax^{n-1} $
Pembahasan
Periksa nilai limitnya :
$ \begin{align} \displaystyle \lim_{x \to p} \frac{x^3+px^2+qx}{x-p} & = 12 \\ \frac{p^3+p.p^2+q.p}{p-p} & = 12 \\ \frac{p^3+p^3+pq}{0} & = 12 \\ \frac{2p^3+pq}{0} & = 12 \end{align} $
Bentuk $ \frac{2p^3+pq}{0} $ jika kita hitung maka hasilnya $ \infty $, sementara hasil pada soal adalah 12, ini artinya bentuk limitnya harus tak tentu yaitu $ \frac{0}{0} $ agar limitnya bisa kita proses lagi sehingga hasilnya menjadi 12.
$ \frac{2p^3+pq}{0} = \frac{0}{0} \rightarrow 2p^3+pq = 0 $
Bagi dengan $ p $, kita peroleh $ 2p^2 + q = 0 \rightarrow q = -2p^2 \, $ ......(i)
Turunan pada limitnya :
$ \begin{align} \displaystyle \lim_{x \to p} \frac{x^3+px^2+qx}{x-p} & = 12 \\ \displaystyle \lim_{x \to p} \frac{3x^2+ 2px +q}{1} & = 12 \\ 3p^2+ 2p.p +q & = 12 \\ 5p^2 +q & = 12 \, \, \, \, \, \, \text{....(ii)} \end{align} $
Substitusi $ q = -2p^2 $ ke pers(ii) :
$ \begin{align} 5p^2 +q & = 12 \\ 5p^2 + (-2p^2 ) & = 12 \\ 3p^2 & = 12 \\ p^2 & = 4 \\ p & = \pm 2 \end{align} $
Karena $ p > 0 $ , maka $ p = 2 $ yang memenuhi.
sehingga $ q = -2p^2 = -2(2)^2 = - 8 $
Menentukan nilai $ p - q $ :
$ \begin{align} p - q & = 2 - (-8) = 10 \end{align} $
Jadi, nilai $ p - q = 10 . \, \heartsuit $ .
Semoga pembahasan soal Soal Jawab Limit UM UGM 2019 MAT IPA Kode 924 ini bermanfaat untuk anda. Jika ada pertanyaan atau soal yang ingin di bahas bisa pilih menu tanya soal. Terima kasih dan sampai jumpa di masalah masalah berikutnya guys.
Cari Soal dan Pembahasan tentang Kode 924 2019, limit, UM UGM
Loading...