-->

Soal-Jawab Turunan UM UGM 2019 MAT IPA Kode 924

Topik Bahasan ,
Diketahui fungsi $ f $ dan $ g $ dengan $ f(x)=(2x+1)^5 $ dan $ h=f\circ g $. Jika $ g(5)=-1 $ dan $ g^\prime \left( \frac{x+1}{x-1} \right)=2x+2$, maka $ h^\prime (5) = .... $
A). $ 10 \, $ B). $ 25 \, $ C). $ 50 \, $ D). $ 60 \, $ E). $ 120 $

Materi
 Rumus dasar turunan :
$ y = [g(x)]^n \rightarrow y^\prime = n[g(x)]^{n-1}. g^\prime (x) $
$ y = f(g(x)) \rightarrow y^\prime = f^\prime (g(x)) . g^\prime (x) $

Komposisi fungsi :
$ ( f\circ g)(x) = f(g(x)) $

Pembahasan
 Menentukan turunannya $ f(x) $ :
$ \begin{align} f(x) & =(2x+1)^5 \\ f^\prime (x) & = 5(2x+1)^4. 2 \\ f^\prime (x) & = 10(2x+1)^4 \\ f^\prime (-1) & = 10(2.(-1)+1)^4 \\ & = 10(-11)^4 = 10 \end{align} $

 Diketahui $ g^\prime \left( \frac{x+1}{x-1} \right)=2x+2 $, menentukan $ g^\prime (5) $ :
-). Menentukan nilai $ x $ agar menjadi $ g^\prime (5) $ :
$ \begin{align} \frac{x+1}{x-1} & = 5 \\ x + 1 & = 5x - 5 \\ 4x & = 6 \\ x & = \frac{6}{4} = \frac{3}{2} \end{align} $
-). Substitusi $ x = \frac{3}{2} $ ke $ g^\prime \left( \frac{x+1}{x-1} \right)=2x+2 $
Untuk $ x = \frac{3}{2} $, maka $ \frac{x+1}{x-1} = 5 $ :
$ \begin{align} x = \frac{3}{2} \rightarrow g^\prime \left( \frac{x+1}{x-1} \right) & =2x+2 \\ g^\prime (5) & =2 (\frac{3}{2}) +2 \\ & =3 +2 \\ & =5 \end{align} $
 Bentuk $ h(x) = (f \circ g)(x) = f(g(x)) $ :
$ \begin{align} h(x) & = f(g(x)) \\ h^\prime(x) & = f^\prime (g(x)) . g^\prime (x) \\ h^\prime(5) & = f^\prime (g(5)) . g^\prime (5) \\ & = f^\prime (-1) . 5 \\ & = 10 . 5 \\ & = 50 \end{align} $
Jadi, nilai $ h^\prime(5) = 50 .

Semoga pembahasan soal Soal-Jawab Turunan UM UGM 2019 MAT IPA Kode 924 ini bermanfaat untuk anda. Jika ada pertanyaan atau soal yang ingin di bahas bisa pilih menu tanya soal. Terima kasih dan sampai jumpa di masalah masalah berikutnya guys.

Cari Soal dan Pembahasan tentang ,

Loading...