-->

Pembahasan Soal Geometri UM UGM 2019 Matematika IPA Kode 924

Topik Bahasan , ,
Soal:
Diberikan kubus ABCD.EFGH dan P adalah titik tengah BC. Perbandingan luas segitiga APG dan luas segitiga DPG adalah .....
A). $ 1 : 1 \, $ B). $ \sqrt{3} : \sqrt{2} \, $ C). $ \sqrt{2} : 1 \, $ D). $ 3 : 2 \, $ E). $ \sqrt{3} : 1 \, $

Konsep Dasar
 Luas segitiga $ = \frac{1}{2}.a.t $

Pembahasan
Perhatikan gambar, misal panjang rusuk kubus = 2  


 Panjang $ AG = s\sqrt{3} = 2\sqrt{3} $ (diagonal ruang)
$ AM = MG = \frac{1}{2}.AG = \sqrt{3} $

 Panjang $ DG = s\sqrt{2} = 2\sqrt{2} $ (diagonal bidang)
$ DN = NG = \frac{1}{2}.DG = \sqrt{2} $

 Segitiga ABP :
$ AP = \sqrt{AB^2 + BP^2} = \sqrt{2^2+1^2} = \sqrt{5} $
Panjang $ AP = DP = GP $.

Segitiga APG :
$ MP = \sqrt{PG^2 - MG^2} = \sqrt{\sqrt{5}^2 - \sqrt{3}^2} = \sqrt{2} $

Segitiga DPG :
$ NP = \sqrt{PG^2 - NG^2} = \sqrt{\sqrt{5}^2 - \sqrt{2}^2} = \sqrt{3} $


Luas segitiga APG :
$\begin{align} \text{Luas APG } & = \frac{1}{2}.AG.MP \\ & = \frac{1}{2}.2\sqrt{3} . \sqrt{2} \\ & = \sqrt{6} \end{align} $


Luas segitiga DPG :
$\begin{align} \text{Luas DPG } & = \frac{1}{2}.DG.NP \\ & = \frac{1}{2}.2\sqrt{2} . \sqrt{3} \\ & = \sqrt{6} \end{align} $


Perbandingan luasnya :
$\begin{align} \text{Luas APG } : \text{ Luas DPG } & = \sqrt{6} : \sqrt{6} \\ & = 1 : 1 \end{align} $
Jadi, perbandingan luasnya $ 1 : 1 . \, \heartsuit $
.

Cari Soal dan Pembahasan tentang , ,

Loading...