Topik Bahasan
geometri ruang,
Kode 924 2019,
UM UGM
.
Semoga pembahasan soal Pembahasan Soal Geometri UM UGM 2019 Matematika IPA Kode 924 ini bermanfaat untuk anda. Jika ada pertanyaan atau soal yang ingin di bahas bisa pilih menu tanya soal. Terima kasih dan sampai jumpa di masalah masalah berikutnya guys.
Soal:
Diberikan kubus ABCD.EFGH dan P adalah titik tengah BC. Perbandingan luas segitiga
APG dan luas segitiga DPG adalah .....
A). $ 1 : 1 \, $ B). $ \sqrt{3} : \sqrt{2} \, $ C). $ \sqrt{2} : 1 \, $ D). $ 3 : 2 \, $ E). $ \sqrt{3} : 1 \, $
A). $ 1 : 1 \, $ B). $ \sqrt{3} : \sqrt{2} \, $ C). $ \sqrt{2} : 1 \, $ D). $ 3 : 2 \, $ E). $ \sqrt{3} : 1 \, $
Konsep Dasar
Luas segitiga $ = \frac{1}{2}.a.t $
Luas segitiga $ = \frac{1}{2}.a.t $
Pembahasan
Perhatikan gambar, misal panjang rusuk kubus = 2
Panjang $ AG = s\sqrt{3} = 2\sqrt{3} $ (diagonal ruang)
$ AM = MG = \frac{1}{2}.AG = \sqrt{3} $
Panjang $ DG = s\sqrt{2} = 2\sqrt{2} $ (diagonal bidang)
$ DN = NG = \frac{1}{2}.DG = \sqrt{2} $
Segitiga ABP :
$ AP = \sqrt{AB^2 + BP^2} = \sqrt{2^2+1^2} = \sqrt{5} $
Panjang $ AP = DP = GP $.
Segitiga APG :
$ MP = \sqrt{PG^2 - MG^2} = \sqrt{\sqrt{5}^2 - \sqrt{3}^2} = \sqrt{2} $
Segitiga DPG :
$ NP = \sqrt{PG^2 - NG^2} = \sqrt{\sqrt{5}^2 - \sqrt{2}^2} = \sqrt{3} $
Luas segitiga APG :
$\begin{align} \text{Luas APG } & = \frac{1}{2}.AG.MP \\ & = \frac{1}{2}.2\sqrt{3} . \sqrt{2} \\ & = \sqrt{6} \end{align} $
Luas segitiga DPG :
$\begin{align} \text{Luas DPG } & = \frac{1}{2}.DG.NP \\ & = \frac{1}{2}.2\sqrt{2} . \sqrt{3} \\ & = \sqrt{6} \end{align} $
Perbandingan luasnya :
$\begin{align} \text{Luas APG } : \text{ Luas DPG } & = \sqrt{6} : \sqrt{6} \\ & = 1 : 1 \end{align} $
Jadi, perbandingan luasnya $ 1 : 1 . \, \heartsuit $
Perhatikan gambar, misal panjang rusuk kubus = 2
Panjang $ AG = s\sqrt{3} = 2\sqrt{3} $ (diagonal ruang)
$ AM = MG = \frac{1}{2}.AG = \sqrt{3} $
Panjang $ DG = s\sqrt{2} = 2\sqrt{2} $ (diagonal bidang)
$ DN = NG = \frac{1}{2}.DG = \sqrt{2} $
Segitiga ABP :
$ AP = \sqrt{AB^2 + BP^2} = \sqrt{2^2+1^2} = \sqrt{5} $
Panjang $ AP = DP = GP $.
Segitiga APG :
$ MP = \sqrt{PG^2 - MG^2} = \sqrt{\sqrt{5}^2 - \sqrt{3}^2} = \sqrt{2} $
Segitiga DPG :
$ NP = \sqrt{PG^2 - NG^2} = \sqrt{\sqrt{5}^2 - \sqrt{2}^2} = \sqrt{3} $
Luas segitiga APG :
$\begin{align} \text{Luas APG } & = \frac{1}{2}.AG.MP \\ & = \frac{1}{2}.2\sqrt{3} . \sqrt{2} \\ & = \sqrt{6} \end{align} $
Luas segitiga DPG :
$\begin{align} \text{Luas DPG } & = \frac{1}{2}.DG.NP \\ & = \frac{1}{2}.2\sqrt{2} . \sqrt{3} \\ & = \sqrt{6} \end{align} $
Perbandingan luasnya :
$\begin{align} \text{Luas APG } : \text{ Luas DPG } & = \sqrt{6} : \sqrt{6} \\ & = 1 : 1 \end{align} $
Jadi, perbandingan luasnya $ 1 : 1 . \, \heartsuit $
Semoga pembahasan soal Pembahasan Soal Geometri UM UGM 2019 Matematika IPA Kode 924 ini bermanfaat untuk anda. Jika ada pertanyaan atau soal yang ingin di bahas bisa pilih menu tanya soal. Terima kasih dan sampai jumpa di masalah masalah berikutnya guys.
Cari Soal dan Pembahasan tentang geometri ruang, Kode 924 2019, UM UGM
Loading...