-->

Titik koordinat yang termasuk penyelesaian dari sistem persamaan

Topik Bahasan
Titik koordinat yang termasuk penyelesaian dari sistem persamaan $\begin{cases} y & = 2x+5 \\ y & = x^2-3 \end{cases}$ adalah $\cdots \cdot$

A. $(-4, 13)$ D. $(2, -1)$
B. $(-2, 1)$ E. $(4, 11)$
C. $(0, -4)$

Pembahasan
Pertama, cari titik potong dari grafik kedua persamaan tersebut.
$$\begin{aligned} y & = y \\ x^2-3 & = 2x+5 \\ x^2-2x-8 & = 0 \\ (x-4)(x+2) & = 0 \\ x = 4~\text{atau}~x & = -2 \end{aligned}$$Substitusi masing-masing dua nilai $x$ tersebut ke persamaan $y = 2x+5$ sehingga diperoleh
$$\begin{aligned} x = 4 & \Rightarrow y = 2(4) + 5 = 13 \\ x = -2 & \Rightarrow y = 2(-2) + 5 = 1 \end{aligned}$$Jadi, titik potongnya adalah $(4, 13)$ dan $(-2, 1)$.
Titik potong adalah titik koordinat yang merupakan penyelesaian dari sistem persamaan tersebut.
(Jawaban B).

Semoga pembahasan soal Titik koordinat yang termasuk penyelesaian dari sistem persamaan ini bermanfaat untuk anda. Jika ada pertanyaan atau soal yang ingin di bahas bisa pilih menu tanya soal. Terima kasih dan sampai jumpa di masalah masalah berikutnya guys.

Cari Soal dan Pembahasan tentang

Loading...