Soal UM UNDIP 2019 Kode 324
Diberikan dua buah matriks $M=\begin{bmatrix} a+b & a \\ b & a-b \end{bmatrix}$ dan $N=\begin{bmatrix} 1 & -\frac{1}{2}a \\ -2b & 3 \end{bmatrix}$.
Jika $M^{t}=N$, dengan $M^{t}$ menyatakan transpose matriks $M$, maka nilai $a$ adalah...$\begin{align} (A)\ & -2 \\ (B)\ & -1 \\ (C)\ & 0 \\ (D)\ & 1 \\ (E)\ & 2 \end{align}$
Jawab
Dengan menggunakan salah satu sifat matriks $A \cdot A^{-1} = I$, sehingga dapat kita tuliskan:
$\begin{align} AX &= \begin{bmatrix} 2 & -1 \\ 1 & 0 \\ 0 & -3 \end{bmatrix} \\ A^{-1} \cdot AX &= \begin{bmatrix} 1 & 0 & 2 \\ 1 & 2 & 1 \\ 3 & 5 & 3 \end{bmatrix} \cdot \begin{bmatrix} 2 & -1 \\ 1 & 0 \\ 0 & -3 \end{bmatrix} \\ I \cdot X &= \begin{bmatrix} 1 & 0 & 2 \\ 1 & 2 & 1 \\ 3 & 5 & 3 \end{bmatrix} \cdot \begin{bmatrix} 2 & -1 \\ 1 & 0 \\ 0 & -3 \end{bmatrix} \\ X &= \begin{bmatrix} (1)(2)+(0)(1)+(2)(0) & (1)(-1)+(0)(0)+(2)(-3) \\ (1)(2)+(2)(1)+(1)(0) & (1)(-1)+(2)(0)+(1)(-3) \\ (3)(2)+(5)(1)+(3)(0) & (3)(-1)+(5)(0)+(3)(-3) \\ \end{bmatrix} \\ X &= \begin{bmatrix} 2 & -7 \\ 4 & -4 \\ 11 & -12 \end{bmatrix} \end{align}$
$\therefore$ Pilihan yang sesuai $(C)\ \begin{bmatrix} 2 & -7 \\ 4 & -4 \\ 11 & -12 \end{bmatrix}$
.Semoga pembahasan soal Matriks - Soal UM UNDIP 2019 Kode 324 ini bermanfaat untuk anda. Jika ada pertanyaan atau soal yang ingin di bahas bisa pilih menu tanya soal. Terima kasih dan sampai jumpa di masalah masalah berikutnya guys.
Cari Soal dan Pembahasan tentang matriks