Suatu perusahaan konveksi memproduksi tiga model pakaian. Lama waktu pemotongan, penjahitan, dan finishing setiap potong pakaian disajikan dalam tabel berikut.
Lama Waktu | Potong | Jahit | Finishing |
Model A | 0,1 | 0,3 | 0,1 |
Model B | 0,1 | 0,2 | 0,2 |
Model C | 0,3 | 0,4 | 0,1 |
Jumlah waktu yang tersedia di bagian pemotongan, penjahitan dan finishing disajikan dalam tabel berikut.
Pemotongan | 68 |
Penjahitan | 116 |
FinishingB | 51 |
Jika banyak model pakaian yang akan diproduksi untuk model $A,\ B,\ \text{dan}\ C$ berturut-turut $x,\ y,\ \text{dan}\ z$, persamaan matriks yang sesuai untuk masalah tersebut adalah...
$ \begin{align}
(A)\ & \begin{pmatrix}
1 & 3 & 1\\
1 & 2 & 2 \\
3 & 4 & 1
\end{pmatrix}\begin{pmatrix}
x & y & z
\end{pmatrix}=\begin{pmatrix}
680 \\
1160 \\
510
\end{pmatrix} \\
(B)\ & \begin{pmatrix}
1 & 3 & 1\\
1 & 2 & 2 \\
3 & 4 & 1
\end{pmatrix}\begin{pmatrix}
x & y & z
\end{pmatrix}=\begin{pmatrix}
680 & 1160 & 510
\end{pmatrix} \\
(C)\ & \begin{pmatrix}
1 & 3 & 1\\
1 & 2 & 2 \\
3 & 4 & 1
\end{pmatrix}\begin{pmatrix}
x \\ y \\ z
\end{pmatrix}=\begin{pmatrix}
68 \\
116 \\
51
\end{pmatrix} \\
(D)\ & \begin{pmatrix}
1 & 1 & 3\\
3 & 2 & 4 \\
1 & 2 & 1
\end{pmatrix}\begin{pmatrix}
x \\ y \\ z
\end{pmatrix}=\begin{pmatrix}
680 \\
1160 \\
510
\end{pmatrix} \\
(E)\ & \begin{pmatrix}
1 & 3 & 1\\
1 & 2 & 2 \\
3 & 4 & 1
\end{pmatrix}\begin{pmatrix}
x \\ y \\ z
\end{pmatrix}=\begin{pmatrix}
680 \\
1160 \\
510
\end{pmatrix} \\
\end{align}$
PENYELESAIAN
Jika tabel pada soal kita gabungkan kurang lebih seperti berikut ini:
Lama Waktu | Potong | Jahit | Finishing |
Model A $(x)$ | 0,1 | 0,3 | 0,1 |
Model B $(y)$ | 0,1 | 0,2 | 0,2 |
Model C $(z)$ | 0,3 | 0,4 | 0,1 |
Total Waktu | 68 | 116 | 51 |
- Waktu Pemotongan $0,1x+0,1y+0,3z=68$
$ x+ y+3z=680$ - Waktu Penjahitan $0,3x+0,2y+0,4z=116$
$ 3x+ 2y+ 4z=1160$ - Waktu Finishing $0,1x+0,2y+0,1z=116$
$ x+ 2y+ z=510$
$\begin{pmatrix}
1 & 1 & 3\\ 3 & 2 & 4 \\ 1 & 2 & 1
\end{pmatrix}\begin{pmatrix}
x \\ y \\ z
\end{pmatrix}=\begin{pmatrix}
680 \\ 1160 \\ 510
\end{pmatrix}$
Untuk membuktikan penulisan matriks di atas benar atau salah dapat dicoba dengan mencoba mengalikan matriks.
$\therefore$ Pilihan yang sesuai adalah $(D)\ \begin{pmatrix}
1 & 1 & 3\\
3 & 2 & 4 \\
1 & 2 & 1
\end{pmatrix}\begin{pmatrix}
x \\ y \\ z
\end{pmatrix}=\begin{pmatrix}
680 \\
1160 \\
510
\end{pmatrix}$
Semoga pembahasan soal Contoh Soal Aplikasi Matriks dalam Kehidupan Sehari Hari ini bermanfaat untuk anda. Jika ada pertanyaan atau soal yang ingin di bahas bisa pilih menu tanya soal. Terima kasih dan sampai jumpa di masalah masalah berikutnya guys.
Cari Soal dan Pembahasan tentang matriks