Diketahui matriks $A=\begin{pmatrix}
2 & 1\\
3 & 5
\end{pmatrix}$ mempunyai hubungan dengan matriks $B=\begin{pmatrix}
-5 & 3\\
1 & -2
\end{pmatrix}$. Matriks $C=\begin{pmatrix}
3 & 2\\
1 & -5
\end{pmatrix}$ dan matriks $D$ mempunyai hubungan yang serupa dengan $A$ dan $B$. Bentuk $C+D=\cdots$
$\begin{align}
(A)\ & \begin{pmatrix}
8 & 3\\
3 & -8
\end{pmatrix} \\
(B)\ & \begin{pmatrix}
8 & 3\\
3 & -2
\end{pmatrix} \\
(C)\ & \begin{pmatrix}
5 & 1\\
2 & -3
\end{pmatrix} \\
(D)\ & \begin{pmatrix}
3 & -2\\
-1 & -5
\end{pmatrix} \\
(E)\ & \begin{pmatrix}
-3 & 2\\
1 & 5
\end{pmatrix}
\end{align}$
PENYELESAIAN
Hubungan matriks:
$\begin{align}
A & \Leftrightarrow B \\
\begin{pmatrix}
2 & 1\\
3 & 5
\end{pmatrix} & \Leftrightarrow \begin{pmatrix}
-5 & 3\\
1 & -2
\end{pmatrix}
\end{align} $
Jika kita perhatikan hubungan kedua matriks di atas adalah unsur-unsur pada diagonal utama bertukar tempat lalu dikalikan dengan $-1$ dan unsur-unsur pada diagonal samping bertukar tempat.
$\begin{align}
C & \Leftrightarrow D \\
\begin{pmatrix}
3 & 2\\
1 & -5
\end{pmatrix} & \Leftrightarrow \begin{pmatrix}
5 & 1\\
2 & -3
\end{pmatrix}\\
\hline
C + D &=
\begin{pmatrix}
3 & 2\\
1 & -5
\end{pmatrix}+\begin{pmatrix}
5 & 1\\
2 & -3
\end{pmatrix}\\
&=
\begin{pmatrix}
8 & 3\\
3 & -8
\end{pmatrix}
\end{align} $
$\therefore$ Pilihan yang sesuai adalah $(A)\ \begin{pmatrix}
8 & 3\\ 3 & -8
\end{pmatrix}$.
Semoga pembahasan soal Hubungan Dua Matriks ini bermanfaat untuk anda. Jika ada pertanyaan atau soal yang ingin di bahas bisa pilih menu tanya soal. Terima kasih dan sampai jumpa di masalah masalah berikutnya guys.
Cari Soal dan Pembahasan tentang matriks