-->

Persamaan Garis Singgung Lingkaran Melalui Suatu Titik di Luar Lingkaran I

Topik Bahasan
Misalkan titik ($x_1, y_1$ ) berada diluar lingkaran. Akan dicari persamaan garis singgung yang melewati titik diluar lingkaran tersebut. Cara Ini disebut dengan permisalan garis. Langkah Langkahnya sebagai berikut,
  1. Misalkan garis singggungnya $ y = mx + n $ ,
  2. Substitusi titik A($x_1,y_1$) ke garis $ y = mx + n $ , dan tentukan nilai $ n \, $ dalam bentuk $ m $ kemudian substitusi nilai $ n \, $ ke garis $ y = mx + n $ .
  3. Substitusi garis yang baru ke persamaan lingkaran, lalu tentukan nilai diskriminannya ($D$).
  4. Tentukan nilai $ m \, $ dengan syarat garis menyinggung lingkaran : $ D = 0 $ .
  5. Substitusi nilai $ m $ yang diperoleh ke garis baru yang terbentuk.
Baca juga cara Lain: Persamaan Garis Singgung Lingkaran dengan menggunakan koordinat kutub.

Soal 1: Tentukan persamaan garis singgung melalui titik (7, 1) di luar lingkaran $ x^2 + y^2 = 25$

Jawab:
Langkah 1:
Titik (7, 1) berada di luar lingkaran $ x^2 + y^2 = 25 $ sebab jika titik (7, 1) disubstitusikan ke persamaan lingkaran tersebut diperoleh $ 7^2+1^2 = 49 + 1 = 50 > 25 $ .
Misalkan persamaan garis singgungnya : $ y = mx + n $

Langkah 2:
Titik (7,1) dilalui oleh garis singgung, sehingga bisa disubstitusi ke garis singgung :
$ \begin{align} (x,y)=(7,1) \rightarrow y & = mx + n \\ 1 & = m . 7 + n \\ n & = 1 - 7m \end{align} $

Substitusi bentuk $ n = 1 - 7m \, $ ke garis $ y = mx + n $
diperoleh garis singgung baru : $ y = mx + (1-7m) $

Substitusi garis singgung baru ke lingkaran :
$ \begin{align} y = mx + (1-7m) \rightarrow x^2 + y^2 & = 25 \\ x^2 + (mx + 1 - 7m)^2 & = 25 \\ x^2 + m^2x^2 -49m^2+1-14m^2x+2mx-14m & = 25 \\ (m^2+1)x^2 +(2m-14m^2)x + (-49m^2-14m-24) & = 0 \\ a = m^2 + 1, \, b = 2m - 14m^2 , \, c & = -49m^2-14m-24 \end{align} $

Langkah 3
Menentukan nilai Diskriminan ($D$) :
$ \begin{align} D & = b^2 - 4ac \\ & = (2m-14m^2)^2 - 4.(m^2+1).(-49m^2-14m-24) \\ & = 4m^2 - 56m^3 + 196m^4 - 4(49m^2 - 14m - 24 + 49m^4 - 14m^3 - 24m^2) \\ & = -96m^2 + 56m + 96 \end{align} $

Langkah 4
Syarat garis menyinggung lingkaran : $ D = 0 $
$ \begin{align} D & = 0 \\ -96m^2 + 56m + 96 & = 0 \, \, \, \, \text{(bagi -8)} \\ 12m^2 - 7m - 12 & = 0 \\ (4m + 3)(3m - 4) & = 0 \\ m = - \frac{3}{4} \vee m & = \frac{4}{3} \end{align} $

Langkah 5
Substitusi nilai $ m \, $ ke garis singgung baru :
$ \begin{align} m = - \frac{3}{4} \rightarrow y & = mx + (1-7m) \\ y & = - \frac{3}{4} . x + (1-7.(- \frac{3}{4})) \\ y & = - \frac{3}{4} . x + (1 + \frac{21}{4}) \\ y & = - \frac{3}{4} . x + \frac{25}{4} \, \, \, \, \text{(kali 4)} \\ 4y & = -3x + 25 \\ 3x + 4y & = 25 \\ m = \frac{4}{3} \rightarrow y & = mx + (1-7m) \\ y & = \frac{4}{3} . x + (1-7.(\frac{4}{3})) \\ y & = \frac{4}{3} . x + (1 - \frac{28}{3}) \\  y & = \frac{4}{3} . x - \frac{25}{3} \, \, \, \, \text{(kali 3)} \\ 3y & = 4x - 25 \\ 4x - 3y & = 25 \end{align} $
Jadi, Persamaan garis singgungnya adalah $ 3x + 4y = 25 \, $ dan $ 4x - 3y = 25 $ . .

Cari Soal dan Pembahasan tentang

Loading...