Topik Bahasan
integral
Penyelesaian :
Step 1. Integralkan Fungsi:
$ \begin{align} F(x) & = \int F^\prime (x) dx \\ F(x) & = \int (3x^2 + 4x - 1) dx \\ F(x) & = x^3 + 2x - x + c \end{align} $
Step 2. Gunakan titik (1,3) untuk menentukan nilai $ c $ :
$ \begin{align} (x,y) = (1,3) \rightarrow F(x) & = x^3 + 2x - x + c \\ 3 & = 1^3 + 2.1 - 1 + c \\ 3 & = 1 + 2 - 1 + c \\ 3 & = 2 + c \\ c & = 1 \end{align} $
Step 3. Tulis persamaan kurva yang mana jadinya $ F(x) = x^3 + 2x - x + 1 $.
Sementara itu untuk nilai $ F(-1) $ :
$ F(x) = x^3 + 2x - x + 1 \rightarrow F(-1) = (-1)^3 + 2(-1) - (-1) + 1 = -1 $.
Jadi, nilai $ F(-1) = -1 $.
Soal 2. Tentukan fungsi $ y = f(x) \, $ dari persamaan diferensial $ \frac{x^2dy}{dx} = y^2\sqrt{x} \, $ dengan $ y = 1 \, $ di $ x = 1 $.
Penyelesaian :
Step 1: Integralkan
$ \begin{align} \frac{x^2dy}{dx} & = y^2\sqrt{x} \\ \frac{ dy}{y^2} & = \frac{\sqrt{x}}{x^2} dx \\ y^{-2}dy & = x^{-\frac{3}{2}} dx \\ \int y^{-2}dy & = \int x^{-\frac{3}{2}} dx \\ \frac{1}{-2+1}y^{-2+1} & = \frac{1}{-\frac{3}{2} + 1} x^{-\frac{3}{2} + 1} + c \\ -y^{-1} & = \frac{1}{-\frac{1}{2}} x^{-\frac{1}{2} } + c \\ -y^{-1} & = (-2) \frac{1}{x^{\frac{1}{2} }} + c \\ \frac{1}{y} & = \frac{2}{\sqrt{x}} + c \end{align} $
Step Gunakan Nilai $ y = 1 \, $ di $ x = 1 $, untuk mencari konstanta (C)
$ \begin{align} \frac{1}{y} & = \frac{2}{\sqrt{x}} + c \\ \frac{1}{1} & = \frac{2}{\sqrt{1}} + c \\ 1 & = 2 + c \\ c & = -1 \end{align} $
Jadi persamaan kurva$ y = f(x) $
$ \begin{align} \frac{1}{y} & = \frac{2}{\sqrt{x}} - 1 \\ \frac{1}{y} & = \frac{2}{\sqrt{x}} - \frac{\sqrt{x}}{\sqrt{x}} \\ \frac{1}{y} & = \frac{2 - \sqrt{x}}{\sqrt{x}} \\ y & = \frac{\sqrt{x}}{2 - \sqrt{x}} \end{align} $.
Semoga pembahasan soal Soal dan Pembahasan Menentukan Persamaan Grafik Kurva dengan Integral ini bermanfaat untuk anda. Jika ada pertanyaan atau soal yang ingin di bahas bisa pilih menu tanya soal. Terima kasih dan sampai jumpa di masalah masalah berikutnya guys.
Langkah menentukan persamaan kurva atau grafik dengan integral sebagai berikut,
Soal 1. Jika kurva $ F(x) \, $ melalui titik (1,3) dengan $ F^\prime (x) = 3x^2 + 4x - 1 \, $. Tentukan nilai $ F(-1) $.- Integralkan Fungsi. Perlu diperhatikan apakah yang diberikan turunan pertama, turunan kedua atau turunan ke berapa.
- Gunakan nilai yang diketahui di soal untuk menentukan nilai konstanta C.
- Tulis persamaan kurva dengan sempurna.
Penyelesaian :
Step 1. Integralkan Fungsi:
$ \begin{align} F(x) & = \int F^\prime (x) dx \\ F(x) & = \int (3x^2 + 4x - 1) dx \\ F(x) & = x^3 + 2x - x + c \end{align} $
Step 2. Gunakan titik (1,3) untuk menentukan nilai $ c $ :
$ \begin{align} (x,y) = (1,3) \rightarrow F(x) & = x^3 + 2x - x + c \\ 3 & = 1^3 + 2.1 - 1 + c \\ 3 & = 1 + 2 - 1 + c \\ 3 & = 2 + c \\ c & = 1 \end{align} $
Step 3. Tulis persamaan kurva yang mana jadinya $ F(x) = x^3 + 2x - x + 1 $.
Sementara itu untuk nilai $ F(-1) $ :
$ F(x) = x^3 + 2x - x + 1 \rightarrow F(-1) = (-1)^3 + 2(-1) - (-1) + 1 = -1 $.
Jadi, nilai $ F(-1) = -1 $.
Soal 2. Tentukan fungsi $ y = f(x) \, $ dari persamaan diferensial $ \frac{x^2dy}{dx} = y^2\sqrt{x} \, $ dengan $ y = 1 \, $ di $ x = 1 $.
Penyelesaian :
Step 1: Integralkan
$ \begin{align} \frac{x^2dy}{dx} & = y^2\sqrt{x} \\ \frac{ dy}{y^2} & = \frac{\sqrt{x}}{x^2} dx \\ y^{-2}dy & = x^{-\frac{3}{2}} dx \\ \int y^{-2}dy & = \int x^{-\frac{3}{2}} dx \\ \frac{1}{-2+1}y^{-2+1} & = \frac{1}{-\frac{3}{2} + 1} x^{-\frac{3}{2} + 1} + c \\ -y^{-1} & = \frac{1}{-\frac{1}{2}} x^{-\frac{1}{2} } + c \\ -y^{-1} & = (-2) \frac{1}{x^{\frac{1}{2} }} + c \\ \frac{1}{y} & = \frac{2}{\sqrt{x}} + c \end{align} $
Step Gunakan Nilai $ y = 1 \, $ di $ x = 1 $, untuk mencari konstanta (C)
$ \begin{align} \frac{1}{y} & = \frac{2}{\sqrt{x}} + c \\ \frac{1}{1} & = \frac{2}{\sqrt{1}} + c \\ 1 & = 2 + c \\ c & = -1 \end{align} $
Jadi persamaan kurva$ y = f(x) $
$ \begin{align} \frac{1}{y} & = \frac{2}{\sqrt{x}} - 1 \\ \frac{1}{y} & = \frac{2}{\sqrt{x}} - \frac{\sqrt{x}}{\sqrt{x}} \\ \frac{1}{y} & = \frac{2 - \sqrt{x}}{\sqrt{x}} \\ y & = \frac{\sqrt{x}}{2 - \sqrt{x}} \end{align} $.
Semoga pembahasan soal Soal dan Pembahasan Menentukan Persamaan Grafik Kurva dengan Integral ini bermanfaat untuk anda. Jika ada pertanyaan atau soal yang ingin di bahas bisa pilih menu tanya soal. Terima kasih dan sampai jumpa di masalah masalah berikutnya guys.
Cari Soal dan Pembahasan tentang integral
Loading...