-->

Soal dan Pembahasan Menentukan Persamaan Grafik Kurva dengan Integral

Topik Bahasan
Langkah menentukan persamaan kurva atau grafik dengan integral sebagai berikut,
  1. Integralkan Fungsi. Perlu diperhatikan apakah yang diberikan turunan pertama, turunan kedua atau turunan ke berapa.
  2. Gunakan nilai yang diketahui di soal untuk menentukan nilai konstanta C.
  3. Tulis persamaan kurva dengan sempurna.
Soal 1. Jika kurva $ F(x) \, $ melalui titik (1,3) dengan $ F^\prime (x) = 3x^2 + 4x - 1 \, $. Tentukan nilai $ F(-1) $.

Penyelesaian :
Step 1. Integralkan Fungsi:
$ \begin{align} F(x) & = \int F^\prime (x) dx \\ F(x) & = \int (3x^2 + 4x - 1) dx \\ F(x) & = x^3 + 2x - x + c \end{align} $
Step 2. Gunakan titik (1,3) untuk menentukan nilai $ c $ :
$ \begin{align} (x,y) = (1,3) \rightarrow F(x) & = x^3 + 2x - x + c \\ 3 & = 1^3 + 2.1 - 1 + c \\ 3 & = 1 + 2 - 1 + c \\ 3 & = 2 + c \\ c & = 1 \end{align} $
Step 3. Tulis persamaan kurva yang mana jadinya $ F(x) = x^3 + 2x - x + 1 $.
Sementara itu untuk nilai $ F(-1) $ :
$ F(x) = x^3 + 2x - x + 1 \rightarrow F(-1) = (-1)^3 + 2(-1) - (-1) + 1 = -1 $.
Jadi, nilai $ F(-1) = -1 $.

Soal 2. Tentukan fungsi $ y = f(x) \, $ dari persamaan diferensial $ \frac{x^2dy}{dx} = y^2\sqrt{x} \, $ dengan $ y = 1 \, $ di $ x = 1 $.

Penyelesaian :
Step 1: Integralkan
$ \begin{align} \frac{x^2dy}{dx} & = y^2\sqrt{x} \\ \frac{ dy}{y^2} & = \frac{\sqrt{x}}{x^2} dx \\ y^{-2}dy & = x^{-\frac{3}{2}} dx \\ \int y^{-2}dy & = \int x^{-\frac{3}{2}} dx \\ \frac{1}{-2+1}y^{-2+1} & = \frac{1}{-\frac{3}{2} + 1} x^{-\frac{3}{2} + 1} + c \\ -y^{-1} & = \frac{1}{-\frac{1}{2}} x^{-\frac{1}{2} } + c \\ -y^{-1} & = (-2) \frac{1}{x^{\frac{1}{2} }} + c \\ \frac{1}{y}   & = \frac{2}{\sqrt{x}} + c \end{align} $
Step Gunakan Nilai $ y = 1 \, $ di $ x = 1 $, untuk mencari konstanta (C)
$ \begin{align} \frac{1}{y} & = \frac{2}{\sqrt{x}} + c \\ \frac{1}{1} & = \frac{2}{\sqrt{1}} + c \\ 1   & = 2 + c \\ c & = -1 \end{align} $
Jadi persamaan kurva$ y = f(x) $
$ \begin{align} \frac{1}{y} & = \frac{2}{\sqrt{x}} - 1 \\ \frac{1}{y} & = \frac{2}{\sqrt{x}} - \frac{\sqrt{x}}{\sqrt{x}} \\ \frac{1}{y} & = \frac{2 - \sqrt{x}}{\sqrt{x}} \\ y & = \frac{\sqrt{x}}{2 - \sqrt{x}} \end{align} $.

Cari Soal dan Pembahasan tentang

Loading...