Topik Bahasan
integral
Semoga pembahasan soal Soal Pembahasan Integral Subtitusi ini bermanfaat untuk anda. Jika ada pertanyaan atau soal yang ingin di bahas bisa pilih menu tanya soal. Terima kasih dan sampai jumpa di masalah masalah berikutnya guys.
Langkah Menyelesaikan Soal Integral dengan Teknik Subtitusi dari $ \int [f(x)]^n g(x) dx \, $ sebagai berikut:
1. Misalkan dan cari turunannya $ u = f(x) \, , $
Turunkan u: $ \frac{du}{dx} = f^\prime (x) \rightarrow dx = \frac{du}{f^\prime (x) } $ .
2. Soal diubah semua dalam bentuk u dan integralkan seperti biasanya. $ \int [f(x)]^n g(x) dx = \int [u]^n g(x) \frac{du}{u^\prime } \, $ atau $ \int [f(x)]^n g(x) dx = \int [u]^n g(x) \frac{du}{ f^\prime (x) } $
Q1. Tentukanlah hasil dari integral: $ \int (4x + 8) \sqrt{x^2 + 4x - 5} dx $ ?1. Misalkan dan cari turunannya $ u = f(x) \, , $
Turunkan u: $ \frac{du}{dx} = f^\prime (x) \rightarrow dx = \frac{du}{f^\prime (x) } $ .
2. Soal diubah semua dalam bentuk u dan integralkan seperti biasanya. $ \int [f(x)]^n g(x) dx = \int [u]^n g(x) \frac{du}{u^\prime } \, $ atau $ \int [f(x)]^n g(x) dx = \int [u]^n g(x) \frac{du}{ f^\prime (x) } $
Penyelesaian :
Misalkan dan turunkan
$ u = x^2 + 4x - 5 \\ \frac{du}{dx} = 2x + 4 \\ dx = \frac {du}{2x + 4}$
Mengubah bentuk soal dan mengintegralkan::
$ \begin{align} \int (4x + 8) \sqrt{x^2 + 4x - 5} dx & = \int (4x + 8) \sqrt{u} \frac{du}{u^\prime} \\ & = \int (4x + 8) \sqrt{u} \frac{du}{2x + 4 } \\ & = \int 2(2x + 4) \sqrt{u} \frac{du}{2x + 4 } \, \, \, \, \, \text{(sederhanakan)} \\ & = \int 2 \sqrt{u} du \\ & = 2 \int u^\frac{1}{2} du \\ & = 2 . \frac{1}{\frac{1}{2} + 1} u^{\frac{1}{2} + 1} + c \\ & = 2 . \frac{1}{\frac{3}{2} } u^{\frac{3}{2} } + c \\ & = 2 . \frac{2}{3} u^{1 + \frac{1}{2} } + c \\ & = \frac{4}{3} u^1 . u^{\frac{1}{2} } + c \\ & = \frac{4}{3} u . \sqrt{u} + c \, \, \, \, \, \text{(kembalikan bentuk } u) \\ & = \frac{4}{3} (x^2 + 4x - 5) \sqrt{x^2 + 4x - 5} + c \end{align} $
Bentuk $ \frac{4}{3} (x^2 + 4x - 5) \sqrt{x^2 + 4x - 5} + c = \frac{4}{3} \sqrt{(x^2 + 4x - 5)^3} + c $
Jadi, hasil dari $ \int (4x + 8) \sqrt{x^2 + 4x - 5} dx = \frac{4}{3} (x^2 + 4x - 5) \sqrt{x^2 + 4x - 5} + c $.
atau $ \int (4x + 8) \sqrt{x^2 + 4x - 5} dx = \frac{4}{3} \sqrt{(x^2 + 4x - 5)^3} + c $
Q2. Tentukanlah hasil integral dari : $ \int \frac{5\sqrt{ (\sqrt{x} + 2 )^3}}{\sqrt{x}} dx $ ?
Penyelesaian :
Misalkan dan turunkan
$ u = \sqrt{x} + 2 \\ \frac{du}{dx} = \frac{1}{2\sqrt{x}} \\ dx = \frac {du}{\frac{1}{2\sqrt{x}}} $
Ubah bentuk soal dan Integralkan:
$ \begin{align} \int \frac{5\sqrt{ (\sqrt{x} + 2 )^3}}{\sqrt{x}} dx & = \int \frac{5\sqrt{ (u )^3}}{\sqrt{x}} \frac{du}{u^\prime} \\ & = \int \frac{5\sqrt{ (u )^3}}{\sqrt{x}} \frac{du}{\frac{1}{2\sqrt{x}} } \\ & = \int \frac{5\sqrt{ (u )^3}}{\sqrt{x}} . 2\sqrt{x} du \, \, \, \, \, \text{(sederhanakan)} \\ & = \int 10\sqrt{ (u )^3} du \\ & = 10 \int u^\frac{3}{2} du \\ & = 10 . \frac{1}{\frac{3}{2} + 1} u^{\frac{3}{2} + 1} + c \\ & = 10 . \frac{1}{\frac{5}{2} } u^{\frac{5}{2} } + c \\ & = 10 . \frac{2}{5} \sqrt{u^5} + c \\ & = 4 \sqrt{u^5} + c \, \, \, \, \, \text{(kembalikan bentuk } u) \\ & = 4 \sqrt{(\sqrt{x} + 2)^5} + c \, \, \, \, \, \text{(atau)} \\ & = 4 (\sqrt{x} + 2)^2\sqrt{ \sqrt{x} + 2 } + c \end{align} $
Jadi, hasil dari $ \int \frac{5\sqrt{ (\sqrt{x} + 2 )^3}}{\sqrt{x}} dx = 4 \sqrt{(\sqrt{x} + 2)^5} + c $
Q3. Hasil integral dari : $ \int \frac{\cos (\sqrt{x} + 4)}{\sqrt{x}} dx $ ?
Penyelesaian :
Misalkan dan Turunkan
$ u = \sqrt{x} + 4 \\ \frac{du}{dx} = \frac{1}{2\sqrt{x}} \\ dx = \frac {du}{\frac{1}{2\sqrt{x}}}$
Ubah dalam u dan integralkan:
$ \begin{align} \int \frac{\cos (\sqrt{x} + 4)}{\sqrt{x}} dx & = \int \frac{\cos u}{\sqrt{x}} \frac{du}{u^\prime} \\ & = \int \frac{\cos u}{\sqrt{x}} \frac{du}{\frac{1}{2\sqrt{x}} } \\ & = \int \frac{\cos u}{\sqrt{x}} 2\sqrt{x} du \, \, \, \, \, \text{(sederhanakan)} \\ & = 2\int \cos u du \\ & = 2 \sin u + c \, \, \, \, \, \text{(kembalikan bentuk } u) \\ & = 2 \sin (\sqrt{x} + 4) + c \end{align} $
Jadi, hasil dari $ \int \frac{\cos (\sqrt{x} + 4)}{\sqrt{x}} dx = 2 \sin (\sqrt{x} + 4) + c $.
.
Semoga pembahasan soal Soal Pembahasan Integral Subtitusi ini bermanfaat untuk anda. Jika ada pertanyaan atau soal yang ingin di bahas bisa pilih menu tanya soal. Terima kasih dan sampai jumpa di masalah masalah berikutnya guys.
Cari Soal dan Pembahasan tentang integral
Loading...