-->

Soal dan Pembahasan Cara Menjadikan Fungsi Pecah

Topik Bahasan
Jika anda belum paham, silakan baca uraian materi di:  Fungsi Pecah.
Soal 1: $ \frac{2x + 1}{x^2 - 3x} $
Faktorkan Penyebut:
$ x^2 - 3x = x(x-3) $.
Bagi menjadi dua bagian,
$ \begin{align} \frac{2x + 1}{x^2 - 3x} & = \frac{2x + 1}{x(x-3)} = \frac{A}{x} + \frac{B}{x-3} \\ & = \frac{A(x-3) + Bx}{x(x-3)} \\ & = \frac{Ax - 3A + Bx}{x(x-3)} \\ \frac{2x + 1}{x^2 - 3x} & = \frac{(A+B)x - 3A }{x(x-3)} \\ 2x + 1 & = (A+B)x - 3A \end{align} $
Tentukan nilai A dan B melalui kesamaan
 $ 2x + 1 = (A+B)x - 3A $,
$ -3A = 1 \rightarrow A = -\frac{1}{3} $
$ A + B = 2 \rightarrow -\frac{1}{3} + B = 2 \rightarrow B = \frac{7}{2} $
Jadi bentuk pemecahannya,
$ \begin{align} \frac{2x + 1}{x^2 - 3x} & = \frac{A}{x} + \frac{B}{x-3} \\ \frac{2x + 1}{x^2 - 3x} & = \frac{-\frac{1}{3}}{x} + \frac{\frac{7}{2}}{x-3} \\ \frac{2x + 1}{x^2 - 3x} & = \frac{1}{6} \left( \frac{-2}{x} + \frac{21}{x-3} \right) \end{align} $
Bisa ditulis,
 $ \begin{align} \frac{2x + 1}{x^2 - 3x} & = \frac{1}{6} \left( \frac{-2}{x} + \frac{21}{x-3} \right) \end{align} $

Soal 2: $ \frac{ x - 3}{x^2 - 2x - 8} $
Penyebut difaktorkan:
$ x^2 - 2x - 8 = (x+2)(x-4) $.
Bagi menjadi dua bagian,
$ \begin{align} \frac{ x - 3}{x^2 - 2x - 8} & = \frac{ x - 3}{(x+2)(x-4)} = \frac{A}{x+2} + \frac{B}{x-4} \\ & = \frac{A(x-4) + B(x+2)}{(x+2)(x-4)} \\ & = \frac{Ax - 4A + Bx + 2B}{(x+2)(x-4)} \\ & = \frac{(A+B)x - 4A + 2B}{x^2 - 2x - 8} \\ \frac{ x - 3}{x^2 - 2x - 8} & = \frac{(A+B)x - 4A + 2B}{x^2 - 2x - 8} \\ x - 3 & = (A+B)x - 4A + 2B \end{align} $

Tentukan nilai A dan B dari kesamaan
 $ x - 3 = (A+B)x - 4A + 2B $,
$ A + B = 1 \, $ ....pers(i)
$ - 4A + 2B = -3 \, $ ....pers(ii)

Gunakan Eliminasi pers(i) dan pers(ii) :
$ \begin{array}{c|c|cc} A + B = 1 & \times 2 & 2A + 2B = 2 & \\ - 4A + 2B = -3 & \times 1 & - 4A + 2B = -3 & - \\ \hline & & 6A = 5 & \\ & & A = \frac{5}{6} & \end{array} $
Pers(i) : $ A + B = 1 \rightarrow \frac{5}{6} + B = 1 \rightarrow B = \frac{1}{6} $
Bentuk fungsi pecah
$ \begin{align} \frac{ x - 3}{x^2 - 2x - 8} & = \frac{A}{x+2} + \frac{B}{x-4} \\ \frac{ x - 3}{x^2 - 2x - 8} & = \frac{\frac{5}{6} }{x+2} + \frac{\frac{1}{6} }{x-4} \\ \frac{ x - 3}{x^2 - 2x - 8} & = \frac{1}{6} \left( \frac{5}{x+2} + \frac{1 }{x-4} \right) \end{align} $
Jadi $ \begin{align} \frac{ x - 3}{x^2 - 2x - 8} & = \frac{1}{6} \left( \frac{5}{x+2} + \frac{1 }{x-4} \right) \end{align} $

.

Cari Soal dan Pembahasan tentang

Loading...