-->

Soal dan Pembahasan Mencari Gradiens & Persamaan Garis Singgung dengan Turunan

Topik Bahasan
Soal 1. Garis singgung pada kurve $y= x^3-3x^2$ di titik potongnya dengan sumbu x yang absisnya positif memiliki gradien...
a) 3   b ) 9   c) 18  d)27   e)32
Baca Materi di: Gradien dan Persamaan Garis Singgung dengan Turunan
Pembahasan:
Misal $y=f(x) = x^3-3x^2$
Gradien: m = f'(x) = $3x^2-6x$
Disebutkan dititik potong sumbu x, artinya y=0. Saat y=0 maka nilai x,
$y= x^3-3x^2 \\ 0= x^2(x-3) \\ x=0 \cup x=3$
Jadi yang dimaksud pada titik (3,0) sebagai (a,b) pada rumus di atas. Sehingga gradiennya menjadi,
m=f'(a)= $3.3^2-6.3=9$

Soal 2. Kurva $y=3x - \frac {3}{x^2}$ memotong sumbu x di titik P. Persamaan garis singgung kurva di titik P adalah...
a) x-9y-9=0
b) x-9x+9=0
c) 9x-y+9=0
d) 9x-y-9=0
e) 9x+y-9=0

Pembahasan:
Kalimat memotong sumbu x di titik P, artinya y=0. Bisa diketahui koordinat titik singgung,
y=0
$0=3x - \frac {6}{x^2} \\ x=1$
(a,b) = (1,0).
Gradien:
f'(x)= y'=3+ $\frac {3}{x^3}$
m=f'(a) =3+ $\frac {3}{1^3}=9$
Persamaan garis singgung:
y-b=m(x-a)
y-0=9(x-1)
y-9x+9=0 atau 9x-y-9=0

Soal 3. Garis singgung kurva $y=3-x^2$ di titik P(a,-b) dan Q(a,b) memotong sumbu y di titik R. Nilai sehingga segitiga PQR sama sisi adalah:
$a) 2 \sqrt3 \\ b) \sqrt 3 \\ c) \frac {1}{2} \sqrt 3 \\ d ) \frac {1}{3} \sqrt 3 \\ e) \frac {1}{4} \sqrt 3$

Penyelesaian:
Pertama mari di buat sketsa grafik tersebut.
gradien garis singgung turunan  - marthamatika.com
Koordinat P (-a,b) dan Q (a,b). Dengan demikian kita tahu panjang PQ = 2a. Syarat segitiga disebutkan sama sisi. Disini akan anda bisa tulis PQ=PR=QR. Titik R titik potong grafik dengan sumbu y (x=0). Titik R yang dimaksud (0,3).
QR =PQ
Ingat rumus jarak antara dua titik $(x_1,y_1)$ dengan $(x_2, y_2)$ adalah:
$d = \sqrt {(x_1 -x_2)^2+(y_1-y_2)^2}$
Panjang PR dan PQ masing masing ditulis dalam kesamaan,
$\sqrt {(x_Q -x_R)^2+(y_Q-y_R)^2} = 2a$
$(x_Q -x_R)^2+(y_Q-y_R)^2 = 4a^2$
$(a-0)^2+(b-3)^2 = 4a^2 \\ a^2+(b-3)^2 =4a^2$
simpan persamaan ini.
$y=3-x^2$ karena melewati titik P(-a,b) maka berlalu
$b=3 - (-a)^2 \\ b= 3-a^2$
Subtitusikan ke persamaan 1
$a^2+(b-3)^2 =4a^2 \\ a^2+(3-a^2-3)^2 =4a^2 \\ a^2+(-a^2)^2 =4a^2 \\  a^2+(a)^4 =4a^2  \\ (a)^4 =3a^2 \\ a^2=3 \\ a= \sqrt 3$

.

Semoga pembahasan soal Soal dan Pembahasan Mencari Gradiens & Persamaan Garis Singgung dengan Turunan ini bermanfaat untuk anda. Jika ada pertanyaan atau soal yang ingin di bahas bisa pilih menu tanya soal. Terima kasih dan sampai jumpa di masalah masalah berikutnya guys.

Cari Soal dan Pembahasan tentang

Loading...