Topik Bahasan
Kode 924 2019,
UM UGM
Jika suku banyak $ x^4+3x^3+Ax^2+x+B $ dibagi $ x^2+2x+2 $ bersisa $ 7x+14$, maka jika dibagi $ x^2+4x+2 $ akan bersisa .....
A). $ x + 1 \, $
B). $ x + 2 \, $
C). $ x + 3 $
D). $ 2x+1 \, $
E). $ 2x + 4 $
Pembahasan
Suku banyak $ x^4+3x^3+Ax^2+x+B $ dibagi $ x^2+2x+2 $ bersisa $ 7x+14$ :
Nilai $ A $ dan $ B $ dengan Metode Horner Umum :
$\begin{array}{c|cccccc} & 1 & 3 & A & 1 & B & \\ -2 & * & -2 & -2 & -2A+8 & * & \\ -2 & * & * & -2 & -2 & -2A+8 & + \\ \hline & 1 & 1 & A-4 & -2A+11 & B-2A+8 & \end{array} $
Sisa pembagiannya :
$ s(x) = (-2A+11)x + (B-2A+8) $
sisanya sama dengan $ 7x + 14 $, sehingga :
$ -2A+11 = 7 \rightarrow A = 2 $
$ B-2A+8 = 14 \rightarrow B = 10 $
Sehingga suku banyaknya menjadi :
$ x^4+3x^3+Ax^2+x+B = x^4+3x^3+2x^2+x+10 $
Menentukan sisa pembagian $ x^4+3x^3+2x^2+x+10 $ dengan $ x^2+4x+2 $
$\begin{array}{c|cccccc} & 1 & 3 & 2 & 1 & 10 & \\ -4 & * & -4 & 4 & -8 & * & \\ -2 & * & * & -4 & 4 & -8 & + \\ \hline & 1 & -1 & 2 & 1 & 2 & \end{array} $
Sehingga sisa pembagiannya :
$ s(x) = 1x+ 2 = x + 2 $
Jadi, sisanya $ x + 2 . \, \heartsuit $ .
Semoga pembahasan soal Pembahasan Soal Polinom- UM UGM 2019 MAT IPA Kode Soal 924 ini bermanfaat untuk anda. Jika ada pertanyaan atau soal yang ingin di bahas bisa pilih menu tanya soal. Terima kasih dan sampai jumpa di masalah masalah berikutnya guys.
Jika suku banyak $ x^4+3x^3+Ax^2+x+B $ dibagi $ x^2+2x+2 $ bersisa $ 7x+14$, maka jika dibagi $ x^2+4x+2 $ akan bersisa .....
A). $ x + 1 \, $
B). $ x + 2 \, $
C). $ x + 3 $
D). $ 2x+1 \, $
E). $ 2x + 4 $
Konsep Dasar
*). Untuk pembagian pada suku banyak (polinomial) menggunakan metode horner umum, silahkan baca artikelnya pada link berikut :
"Pembagian Suku Banyak dengan Metode Horner"
*). Untuk pembagian pada suku banyak (polinomial) menggunakan metode horner umum, silahkan baca artikelnya pada link berikut :
"Pembagian Suku Banyak dengan Metode Horner"
Pembahasan
Suku banyak $ x^4+3x^3+Ax^2+x+B $ dibagi $ x^2+2x+2 $ bersisa $ 7x+14$ :
Nilai $ A $ dan $ B $ dengan Metode Horner Umum :
$\begin{array}{c|cccccc} & 1 & 3 & A & 1 & B & \\ -2 & * & -2 & -2 & -2A+8 & * & \\ -2 & * & * & -2 & -2 & -2A+8 & + \\ \hline & 1 & 1 & A-4 & -2A+11 & B-2A+8 & \end{array} $
Sisa pembagiannya :
$ s(x) = (-2A+11)x + (B-2A+8) $
sisanya sama dengan $ 7x + 14 $, sehingga :
$ -2A+11 = 7 \rightarrow A = 2 $
$ B-2A+8 = 14 \rightarrow B = 10 $
Sehingga suku banyaknya menjadi :
$ x^4+3x^3+Ax^2+x+B = x^4+3x^3+2x^2+x+10 $
Menentukan sisa pembagian $ x^4+3x^3+2x^2+x+10 $ dengan $ x^2+4x+2 $
$\begin{array}{c|cccccc} & 1 & 3 & 2 & 1 & 10 & \\ -4 & * & -4 & 4 & -8 & * & \\ -2 & * & * & -4 & 4 & -8 & + \\ \hline & 1 & -1 & 2 & 1 & 2 & \end{array} $
Sehingga sisa pembagiannya :
$ s(x) = 1x+ 2 = x + 2 $
Jadi, sisanya $ x + 2 . \, \heartsuit $ .
Semoga pembahasan soal Pembahasan Soal Polinom- UM UGM 2019 MAT IPA Kode Soal 924 ini bermanfaat untuk anda. Jika ada pertanyaan atau soal yang ingin di bahas bisa pilih menu tanya soal. Terima kasih dan sampai jumpa di masalah masalah berikutnya guys.
Cari Soal dan Pembahasan tentang Kode 924 2019, UM UGM
Loading...