-->

Soal SIMAK UI 2009 Kode 921 - Matriks

Topik Bahasan

 |Diketahui $P=\begin{pmatrix}

2 & 1\\ 3 & 3
\end{pmatrix}$, $Q=\begin{pmatrix}
-1 & -2\\ 1 & 0
\end{pmatrix}$, dan determinan dari matriks $PQ$ adalah $k$. Jika garis $2x-y=4$ dan $3x-2y=5$ berpotongan di $A$, maka persamaan garis yang melalui $A$ dengan gradien $k$ adalah...
$\begin{align}
(A)\ & 6x+y-20=0 \\ (B)\ & 2x-3y-6=0 \\ (C)\ & 3x-2y-4=0 \\ (D)\ & x-6y+16=0 \\ (E)\ & 6x-y-16=0
\end{align}$

Pembahasan:

Unsur-unsur yang dibutuhkan untuk membentuk sebuah persamaan garis adalah sebuah titik dan gradien, $m=k=|PQ|$


$\begin{align}
m & = |PQ| \\ & = \left | \begin{pmatrix}
2 & 1\\ 3 & 3
\end{pmatrix} \begin{pmatrix}
-1 & -2\\ 1 & 0
\end{pmatrix} \right | \\ & = \begin{vmatrix}
-1 & -4\\ 0 & -6
\end{vmatrix} \\ & = 6-0=6
\end{align}$

Titik $A$
$\begin{array}{c|c|cc}
2x-y = 4 & (\times 2) \\ 3x-2y = 5 & (\times 1) \\ \hline
4x-2y = 8 & \\ 3x-2y = 5 & (-) \\ \hline
x = 3 & \\ 3x-2y = 5 & \\ 3(3)-2y = 5 & \\ y = 2
\end{array} $

Persamaan garis melalui $A(3,2)$ dengan $m=6$
$\begin{align}
y-y_{1} & = m(x-x_{1}) \\ y-2 & = 6(x-3) \\ y & = 6x-18+2 \\ y & = 6x-16
\end{align}$

$ \therefore $ Pilihan yang sesuai adalah $(E)\ 6x-y-16=0$


 

.

Semoga pembahasan soal Soal SIMAK UI 2009 Kode 921 - Matriks ini bermanfaat untuk anda. Jika ada pertanyaan atau soal yang ingin di bahas bisa pilih menu tanya soal. Terima kasih dan sampai jumpa di masalah masalah berikutnya guys.

Cari Soal dan Pembahasan tentang

Loading...