-->

Soal UM UGM 2014 Kode 522 - Matriks

Topik Bahasan

 Soal UM UGM 2014 Kode 522 

Nilai semua $x$ sehingga matriks $\begin{pmatrix}
\sqrt{x^{2}-1} & 1\\ x & 2
\end{pmatrix}$, mempunyai invers adalah...
$\begin{align}
(A)\ & x \neq -\dfrac{4}{3}\ \text{dan}\ x \neq \dfrac{4}{3} \\ (B)\ & x \neq -\sqrt{\dfrac{4}{3}}\ \text{dan}\ x \neq \sqrt{\dfrac{4}{3}} \\ (C)\ & \sqrt{\dfrac{4}{3}} \lt x \leq -1\ \text{atau}\ 1 \leq x \lt \sqrt{\dfrac{4}{3}} \\ (D)\ & -\sqrt{\dfrac{4}{3}} \lt x \leq -1\ \text{atau}\ 1 \lt x \lt \sqrt{\dfrac{4}{3}} \\ (E)\ & x \lt -\sqrt{\dfrac{4}{3}}\ \text{atau}\ -\sqrt{\dfrac{4}{3}} \lt x \leq -1\ \text{atau}\ 1 \leq x \lt \sqrt{\dfrac{4}{3}}\ \text{atau}\ x \gt \sqrt{\dfrac{4}{3}}
\end{align}$

Jawaban:

Agar sebuah matriks $\begin{pmatrix}
a & b\\ c & d
\end{pmatrix}$ mempunyai invers maka $ad-bc \neq 0$

$\begin{align}
\begin{vmatrix}
\sqrt{x^{2}-1} & 1\\ x & 2
\end{vmatrix} & \neq 0 \\ 2 \sqrt{x^{2}-1} -x & \neq 0 \\ 2 \sqrt{x^{2}-1} & \neq x \\ 4x^{2}-4 & \neq x^{2} \\ 3x^{2} & \neq 4 \\ x^{2} & \neq \dfrac{4}{3} \\ x & \neq \pm \sqrt{\dfrac{4}{3}}
\end{align}$

Syarat sebuah fungsi bentuk akar $\sqrt{f(x)}$ mempunyai nilai real adalah $f(x) \geq 0$.

Agar $\sqrt{x^{2}-1}$ mempunyai nilai real maka $x^{2}-1 \geq 0$, nilai $x$ yang memenuhi pertidaksamaan kuadrat $x^{2}-1 \geq 0$ adalah $x \leq -1\ \text{atau}\ x \geq 1$.

Jika kita gambarkan irisan $x \neq \pm \sqrt{\dfrac{4}{3}}$ dan $x \leq -1\ \text{atau}\ x \geq 1$ adalah seperti berikut ini;

Matematika Dasar Pertidaksamaan (*Soal Dari Berbagai Sumber)

$\therefore$ Pilihan yang sesuai adalah $(E)\ x \lt -\sqrt{\dfrac{4}{3}}\ \text{atau}$ $ -\sqrt{\dfrac{4}{3}} \lt x \leq -1\ \text{atau}$ $1 \leq x \lt \sqrt{\dfrac{4}{3}}\ \text{atau}\ x \gt \sqrt{\dfrac{4}{3}}$ 

.

Semoga pembahasan soal Soal UM UGM 2014 Kode 522 - Matriks ini bermanfaat untuk anda. Jika ada pertanyaan atau soal yang ingin di bahas bisa pilih menu tanya soal. Terima kasih dan sampai jumpa di masalah masalah berikutnya guys.

Cari Soal dan Pembahasan tentang

Loading...