-->

Jarak titik A ke garis CT adalah

Topik Bahasan
Diketahui kubus $ABCD.EFGH$ dengan rusuk $9\ cm$. Jika titik $T$ terletak pada pertengahan garis $HF$. Jarak titik $A$ ke garis $CT$ adalah...
$\begin{align} (A)\ & 5\sqrt{3}\ cm \\ (B)\ & 6\sqrt{2}\ cm \\ (C)\ & 6\sqrt{3}\ cm \\ (D)\ & 6\sqrt{6}\ cm \\ (E)\ & 7\sqrt{3}\ cm \end{align}$
Pembahasan:

Jika kita gambarkan kedudukan titik $T$ dan garis $CT$ pada kubus $ABCD.EFGH$ seperti berikut ini:

Diketahui kubus ABCD.EFGH dengan rusuk 9 cm . Jika titik  T  terletak pada pertengahan garis  HF . Jarak titik A  ke garis CT  adalah

Jarak titik $A$ ke garis $CT$ dari gambar di atas merupakan tinggi segitiga $ACT$ yang kita sebut $AA'$.

Dengan panjang rusuk kubus $a=9$, maka $AT=\dfrac{9}{2}\sqrt{6}$, $CT=\dfrac{9}{2}\sqrt{6}$ dan $AC=9\sqrt{2}$. Dengan konsep luas segitiga pada segitiga siku-siku $ATC$ dapat kita tuliskan:

$\begin{align} \dfrac{1}{2} \cdot CT \cdot AA' &= \dfrac{1}{2} \cdot AC \cdot OT \\ \dfrac{9}{2}\sqrt{6} \cdot AA' &= 9\sqrt{2} \cdot 9 \\ \dfrac{1}{2}\sqrt{3} \cdot AA' &= 9 \\ AA' &= \dfrac{18}{\sqrt{3}} \\ &= 6\sqrt{3} \end{align}$

$\therefore$ Pilihan yang sesuai adalah $(C)\ 6\sqrt{3}\ cm$

.

Cari Soal dan Pembahasan tentang

Loading...